
OKI

nX-8/500S Core
Instruction Manual

CMOS 16-bit microcontroller

SECOND EDITION
ISSUE DATE: JUNE, 1999

NOTICE

1. The information contained herein can change without notice owing to
product and/or technical improvements. Please make sure before using the
product that the information you are referring to is up-to-date.

2. The outline of action and examples of application circuits described herein
have been chosen as an explanation of the standard action and performance
of the product. When you actually plan to use the product, please ensure
that the outside conditions are reflected in the actual circuit and assembly
designs.

3. NO RESPONSIBILITY IS ASSUMED BY US FOR ANY CON-
SEQUENCE RESULTING FROM ANY WRONG OR IMPROPER
USE OR OPERATION, ETC. OF THE PRODUCT.

4. Neither indemnity against nor license of a third party’s industrial and
intellectual property right, etc. is granted by us in connection with the use
of the product and/or the information and drawings contained herein. No
responsibility is assumed by us for any infringement of a third party’s right
which may result from the use thereof.

5. The products described herein fall within the category of strategical goods,
etc. under the Foreign Exchange and Foreign Trade Control Law.
Accordingly, before exporting the product you are required under the Law
to file the application for the export license by your local Government.

6. No part of the contents contained herein may be reprinted or reproduced
without our prior permission.

Copyright 1999 OKI ELECTRIC INDUSTRY CO., LTD.

Table of Contents

nX-8/500S Instruction Manual 1

Table of Contents

Chapter 0. Preface

Chapter 1. Architecture

1-1. Overview --- 1
1-1-1. Overview Of OLMS-66K Series And nX-8/500S Core ------------------------------ 1

1-2. CPU Resources And Programming Model -- 2
1-2-1. Register --- 2

1-2-1-1. Accumulator (A) --- 3
1-2-1-2. Control Register (CR) --- 4

1-2-1-2-1. Program Status Word (PSW) --- 4
1-2-1-2-1-1. How Instructions Change PSW Flags ------------------------- 6

1-2-1-2-2. Program Counter (PC) -- 8
1-2-1-2-3. Local Register Base (LRB) -- 8
1-2-1-2-4. System Stack Pointer (SSP) -- 9

1-2-1-3. Pointing Registers (PR) --- 10
1-2-1-3-1. Addressing With Pointing Registers ---------------------------------- 11

1-2-1-4. Local Registers (ER) -- 13
1-2-1-4-1. Addressing With Local Registers -------------------------------------- 14

1-2-1-5. Segment Registers --- 16
1-2-1-5-1. Code Segment Register (CSR) -- 16
1-2-1-5-2. Table Segment Register (TSR) -- 16
1-2-1-5-3. Data Segment Register (DSR) --- 17

1-2-1-6. ROM Window Control Register (ROMWIN) ----------------------------------- 17
1-2-1-7. Special Function Registers (SFR) --- 17

1-2-2. Memory Space -- 18
1-2-2-1. Program Memory Space -- 18

1-2-2-1-1. Vector Table Area -- 19
1-2-2-1-1-1. Reset Vector Area -- 19
1-2-2-1-1-2. Interrupt Vector Area --- 20
1-2-2-1-1-3. VCAL Table Area --- 20
1-2-2-1-1-4. Vector Table Coding Syntax ----------------------------------- 21

1-2-2-1-2. ACAL Area --- 22
1-2-2-1-3. ROM Window Area In Program Memory Space ------------------ 22
1-2-2-1-4. Internal And External Program Memory Areas ------------------- 23

Table of Contents

nX-8/500S Instruction Manual2

1-2-2-2. Data Memory Space -- 24
1-2-2-2-1. SFR Area --- 25
1-2-2-2-2. Extended SFR Area --- 25
1-2-2-2-3. Fixed Page --- 26

1-2-2-2-3-1. Area Available For Pointing Registers ----------------------- 26
1-2-2-2-3-2. Fixed Page SBA Area -- 26

1-2-2-2-4. Current Page -- 27
1-2-2-2-4-1. Current Page SBA Area --- 27

1-2-2-2-5. Area Available For Local Registers ----------------------------------- 28
1-2-2-2-6. ROM Window Area In Data Memory Space ------------------------ 28
1-2-2-2-7. Common Area -- 29
1-2-2-2-8. Other Memory --- 29

1-2-2-2-8-1. EEPROM Area --- 29
1-2-2-2-8-2. Dual Port RAM Area -- 29

1-2-2-2-9. Internal And External Data Memory Areas -------------------------- 29

1-3. Data Types -- 30

1-4. Address Allocation --- 32

1-5. Word Boundaries --- 33

1-6. ROM Window Function --- 34

1-7. Memory Models --- 35

1-8. Data Descriptor (DD) --- 36
1-8-1. Description And Use Of DD -- 36
1-8-2. Instructions That Change DD -- 38

1-8-2-1. Instructions That Change DD As Part Of Their Function ----------------- 38
1-8-2-2. Other Instructions That Change DD --- 38

1-8-3. Instruction Affected By DD --- 39
1-8-4. Pre-Fetched Instructions And DD -- 40

1-9. Changing The Stack --- 42

1-10. Instruction Code Format -- 43
1-10-1. Native Instructions And Composite Instructions ------------------------------------ 43

1-11. Microcontrollers That Use The nX-8/500S Core --- 45

Table of Contents

nX-8/500S Instruction Manual 3

Chapter 2. Addressing Modes

2-1. Addressing Mode Types --- 1

2-2. RAM Addressing --- 2
A Accumulator Addressing --- 3
PSW,LRB,SSP Control Register Addressing -- 4
X1,X2,DP,USP Pointing Register Addressing --- 5
ERn,Rn Local Register Addressing --- 6
sfr Dadr SFR Page Addressing --- 7
fix Dadr Fixed Page Addressing --- 8
off Dadr Current Page Addressing --- 9
dir Dadr Direct Data Addressing -- 10
[DP],[X1] DP/X1 Indirect Addressing --- 11
[DP+] DP Indirect Addressing With Post-Increment ------------------- 12
[DP-] DP Indirect Addressing With Post-Decrement -------------------- 13
n7[DP],n7[USP] DP/USP With Indirect Addressing With 7-Bit Displacement ---- 14
D16[X1],D16[X2] X1/X2 Indirect Addressing With 16-Bit Base ---------------------- 15
[X1+A],[X1+R0] X1 Indirect Addressing With 8-Bit Register Displacement ---- 16
sbafix Badr Fixed Page SBA Area Addressing --------------------------------- 17
sbaoff Badr Current Page SBA Area Addressing -------------------------------- 18

2-3. ROM Addressing --- 19
2-3-1. Immediate Addressing --- 19
2-3-2. Table Data Addressing --- 19
2-3-3. Program Code Addressing --- 19

#N16,#N8 Word/Byte Immediate Addressing ---------------------------------- 20
Tadr Direct Table Addressing -- 21
[**] RAM Addressing Indirect Table Addressing --------------------- 22
T16[**] RAM Addressing Indirect Addressing With 16-Bit Base ------ 23
Cadr Near Code Addressing -- 24
Fadr Far Code Addressing -- 25
radr Relative Code Addressing -- 26
Cadr11 ACAL Code Addressing --- 27
Vadr VCAL Code Addressing --- 28
[**] RAM Addressing Indirect Code Addressing --------------------- 29

2-4. ROM Window Addressing -- 30

Table of Contents

nX-8/500S Instruction Manual4

Chapter 3. Instruction Details

nX-8/500S Instruction Set Listed By Function --- 1
Symbols Used In Operand Expressions Of Instructions ------------------------------------ 6
Symbols Used In Instruction Code Expressions Of Instructions -------------------------- 7
General Example for Instruction Details --- 8

A
ACAL Cadr11 Special Area Call -- A-1
ADC A,obj Word Addition With Carry --- A-2
ADC obj1,obj2 Word Addition With Carry --- A-3
ADCB A,obj Byte Addition With Carry -- A-4
ADCB obj1,obj2 Byte Addition With Carry -- A-5
ADD A,obj Word Addition -- A-6
ADD obj1,obj2 Word Addition -- A-7
ADDB A,obj Byte Addition -- A-8
ADDB obj1,obj2 Byte Addition -- A-9
AND A,obj Word Logical AND --- A-10
AND obj1,obj2 Word Logical AND --- A-11
ANDB A,obj Byte Logical AND -- A-12
ANDB obj1,obj2 Byte Logical AND -- A-13

B
BAND C,obj.bit Bit Logical AND -- B-1
BANDN C,obj.bit Bit Complement and Bit Logical AND -------------------------- B-2
BOR C,obj.bit Bit Logical OR -- B-3
BORN C,obj.bit Bit Complement and Bit Logical OR ---------------------------- B-4
BRK Break (System Reset) -- B-5
BXOR C,obj.bit Bit Logical Exclusive OR --- B-6

C
CAL Cadr 64K-Byte Space (Within Current

Physical Code Segment) Direct Call ------------------- C-1
CAL [obj] 64K-Byte Space (Within Current

Physical Code Segment) Indirect Call ----------------- C-2
CLR A Word Clear --- C-3
CLR obj Word Clear --- C-4
CLRB A Byte Clear --- C-5
CLRB obj Byte Clear --- C-6
CMP A,obj Word Comparison --- C-7
CMP obj1,obj2 Word Comparison --- C-8

Table of Contents

nX-8/500S Instruction Manual 5

CMPB A,obj Byte Comparison -- C-9
CMPB obj1,obj2 Byte Comparison -- C-10
CMPC A,[obj] Word ROM Comparison (Indirect) ---------------------------- C-11
CMPC A,T16[obj] Word ROM Comparison (Indirect With 16-Bit Base) ------ C-12
CMPC A,Tadr Word ROM Comparison (Direct) ------------------------------ C-13
CMPCB A,[obj] Byte ROM Comparison (Indirect) ----------------------------- C-14
CMPCB A,T16[obj] Byte ROM Comparison (Indirect With 16-Bit Base) ------- C-15
CMPCB A,Tadr Byte ROM Comparison (Direct) ------------------------------- C-16
CPL C Complement Carry -- C-17

D
DEC A Word Decrement --- D-1
DEC obj Word Decrement --- D-2
DECB A Byte Decrement -- D-3
DECB obj Byte Decrement -- D-4
DI Disable Interrupts -- D-5
DIV obj Word Division --- D-6
DIVB obj Byte Division -- D-7
DIVQ obj Word Quick Division -- D-8
DJNZ obj,radr Loop --- D-9

E
EI Enable Interrupts -- E-1
EXTND Byte to Word Sign Extend --- E-2

F
FCAL Fadr 24-Bit Space (16M Bytes: Entire Program Area) Direct Call F-1
FILL A Word Fill -- F-2
FILL obj Word Fill -- F-3
FILLB A Byte Fill --- F-4
FILLB obj Byte Fill --- F-5
FJ Fadr 24-Bit Space (16M Bytes: Entire Program Area) Direct Jump F-6
FRT Return From Far Subroutine -------------------------------------- F-7

I
INC A Word Increment -- I-1
INC obj Word Increment -- I-2
INCB A Byte Increment --- I-3
INCB obj Byte Increment --- I-4

Table of Contents

nX-8/500S Instruction Manual6

J
J Cadr 64K-Byte Space (Within Current

Physical Code Segment) Direct Jump ----------------- J-1
J [obj] 64K-Byte Space (Within Current

Physical Code Segment) Indirect Jump --------------- J-2
JBR obj.bit,radr Bit Test and Jump --- J-3
JBRS obj.bit,radr Bit Test and Jump (With Bit Set) ------------------------------ J-5
JBS obj.bit,radr Bit Test and Jump --- J-7
JBSR obj.bit,radr Bit Test and Jump (With Bit Reset) --------------------------- J-9
Jcond radr Conditional Jump -- J-11
JRNZ DP,radr Loop --- J-12

L
L A,obj Word Load --- L-1
LB A,obj Byte Load -- L-2
LC A,[obj] Word ROM Load (Indirect) -------------------------------------- L-3
LC A,T16[obj] Word ROM Load (Indirect With 16-Bit Base) -------------- L-4
LC A,Tadr Word ROM Load (Direct) -- L-5
LCB A,[obj] Byte ROM Load (Indirect) --------------------------------------- L-6
LCB A,T16[obj] Byte ROM Load (Indirect With 16-Bit Base) ---------------- L-7
LCB A,Tadr Byte ROM Load (Direct) --- L-8

M
MAC Multiply-Addition Calculation ------------------------------------- M-1
MB C, obj.bit Move Bit -- M-2
MB obj.bit ,C Move Bit -- M-3
MBR C, obj Move Bit (Register Indirect Bit Specification) -------------- M-4
MBR obj, C Move Bit (Register Indirect Bit Specification) -------------- M-5
MOV obj1, obj2 Word Move -- M-6
MOVB obj1, obj2 Byte Move --- M-8
MUL obj Word Multiplication -- M-10
MULB obj Byte Multiplication --- M-11

N
NEG A Word Negate Sign --- N-1
NEGB A Byte Negate Sign -- N-2
NOP No Operation --- N-3

O
OR A, obj Word Logical OR -- O-1
OR obj1, obj2 Word Logical OR -- O-2
ORB A, obj Byte Logical OR -- O-3
ORB obj1, obj2 Byte Logical OR -- O-4

Table of Contents

nX-8/500S Instruction Manual 7

P
POPS register_list Pop Off System Stack -- P-1
PUSHS register_list Push On System Stack -- P-2

R
RB obj.bit Reset Bit (Bit Position Direct Specification) ---------------- R-1
RBR obj Reset Bit (Register Indirect Bit Specification) -------------- R-2
RC Reset Carry --- R-3
RDD Reset DD -- R-4
ROL A Word Left Rotate (With Carry) --------------------------------- R-5
ROL obj Word Left Rotate (With Carry) --------------------------------- R-6
ROLB A Byte Left Rotate (With Carry) ---------------------------------- R-7
ROLB obj Byte Left Rotate (With Carry) ---------------------------------- R-8
ROR A Word Right Rotate (With Carry) ------------------------------- R-9
ROR obj Word Right Rotate (With Carry) ------------------------------- R-10
RORB A Byte Right Rotate (With Carry) -------------------------------- R-11
RORB obj Byte Right Rotate (With Carry) -------------------------------- R-12
RT Return From Subroutine --- R-13
RTI Return From Interrupt --- R-14

S
SB obj.bit Set Bit (Bit Position Direct Specification) -------------------- S-1
SBC A, obj Word Subtraction With Carry ------------------------------------- S-2
SBC obj1, obj2 Word Subtraction With Carry ------------------------------------- S-3
SBCB A, obj Byte Subtraction With Carry -------------------------------------- S-4
SBCB obj1, obj2 Byte Subtraction With Carry -------------------------------------- S-5
SBR obj Set Bit (Register Indirect Bit Specification) ----------------- S-6
SC Set Carry --- S-7
SCAL Cadr 64K-Byte Space (Within Current

Physical Code Segment) Direct Call ------------------- S-8

Table of Contents

nX-8/500S Instruction Manual8

SDD Set DD --- S-9
SJ radr Short Jump -- S-10
SLL A Word Left Shift (With Carry) ------------------------------------ S-11
SLL obj Word Left Shift (With Carry) ------------------------------------ S-12
SLLB A Byte Left Shift (With Carry) ------------------------------------- S-13
SLLB obj Byte Left Shift (With Carry) ------------------------------------- S-14
SQR A Word Square -- S-15
SQRB A Byte Square --- S-16
SRA A Word Arithmetic Right Shift (With Carry) -------------------- S-17
SRA obj Word Arithmetic Right Shift (With Carry) -------------------- S-18
SRAB A Byte Arithmetic Right Shift (With Carry) --------------------- S-19
SRAB obj Byte Arithmetic Right Shift (With Carry) --------------------- S-20
SRL A Word Right Shift (With Carry) --------------------------------- S-21
SRL objWord Right Shift (With Carry) ------------------------------ S-22
SRLB A Byte Right Shift (With Carry) ----------------------------------- S-23
SRLB obj Byte Right Shift (With Carry) ----------------------------------- S-24
ST A,obj Word Store -- S-25
STB A,obj Byte Store --- S-26
SUB A, obj Word Subtraction -- S-27
SUB obj1, obj2 Word Subtraction -- S-28
SUBB A,obj Byte Subtraction --- S-29
SUBB obj1, obj2 Byte Subtraction --- S-30
SWAP High/Low Byte Swap --- S-31

T
TBR obj Test Bit (Register Indirect Bit Specification) ---------------- T-1
TJNZ A, radr Word Test & Jump (Jump If Non-Zero) ---------------------- T-2
TJNZ obj, radr Word Test & Jump (Jump If Non-Zero) ---------------------- T-3
TJNZB A, radr Byte Test & Jump (Jump If Non-Zero) ----------------------- T-4
TJNZB obj, radr Byte Test & Jump (Jump If Non-Zero) ----------------------- T-5
TJZ A, radr Word Test & Jump (Jump If Zero) ---------------------------- T-6
TJZ obj, radr Word Test & Jump (Jump If Zero) ---------------------------- T-7
TJZB A, radr Byte Test & Jump (Jump If Zero) ------------------------------ T-8
TJZB obj, radr Byte Test & Jump (Jump If Zero) ------------------------------ T-9

V
VCAL Vadr Vector Call --- V-1

Table of Contents

nX-8/500S Instruction Manual 9

X
XCHG A, obj Word Exchange -- X-1
XCHGB A, obj Byte Exchange --- X-2
XOR A, obj Word Logical Exclusive OR --------------------------------------- X-3
XOR obj1, obj2 Word Logical Exclusive OR --------------------------------------- X-4
XORB A, obj Byte Logical Exclusive OR -- X-5
XORB obj1, obj2 Byte Logical Exclusive OR -- X-6

Chapter 0. Preface

This chapter explains the configuration and usage of this manual.

Chapter 0 Preface

Preface

This manual describes the instruction set of the nX-8/500S core. The nX-8/500S core is used as the CPU
core of Oki Electric's original CMOS 8/16-bit single-chip microcontrollers. As one of the OLMS-66K
Series cores, the nX-8/500S core is higher end than nX-8/200 and nX-8/400. The first device to use the
nX-8/500S core is the MSM66556/589.

The explanations in this manual presume the basic architecture of the nX-8/500S core. The basic
architecture incorporates the maximum functionality of the nX-8/500S core. In this basic architecture
data memory space and code memory space each have a capacity of 16M bytes (64K bytes×256 segments),
and the architecture provides instructions for manipulating these spaces. Depending on the device you
actually use, the actual capacity and instruction set may be subsets of the basic architecture. Refer to the
user's manual of your device for information on any such limitations.

The following manuals are for products related to the nX-8/500S core. Please read them as well.

�MSM665xx User's Manual
The MSM665xx User's Manual describes the hardware of your target device.

�MAC66K Assembler Package User's Manual
The MAC66K Assembler Package User's Manual explains assembly language syntax
and the use of the relocatable assembler, linker, librarian, and object converter.

�Macroprocessor MP User's Manual
The Macroprocessor MP User's Manual explains macroprocessing language syntax and
the use of the general-purpose macroprocessor.

�EASE665xx User's Manual
The EASE665xx User's Manual describes the EASE665xx emulator and SID665xx
debugger.

This manual consists of three chapters.

Chapter 1 describes the basic architecture of the nX-8/500S core.
This chapter explains how programs make use of major resources, such as registers and
memory. It then describes particular features and restrictions of programming. This
chapter provides the basic knowledge needed to understand Chapter 2 and Chapter 3.

Chapter 2 describes addressing modes.
This chapter explains the coding syntax to access register and memory resources. It
also explains the operation of these accesses in detail.

Chapter 3 describes the functions of each instruction.
This chapter explains the functions and detailed operation of instructions, and provides
instruction codes. It presents instructions in alphabetic order, so it can be used for
reference.

Chapter 0 Preface

This manual uses the following terminology.

�Values
Numeric expressions and address expressions are basically the same as those used with
RAS66K. Refer to the manual for the assembler package for details.

�Ranges
A-B represents a range of values that includes A and B. A-B is used in some places
where it clearly will not be confused with subtraction.

�Addresses
Complete address expressions for the nX-8/500S are coded using a physical segment
number (#0 to #255) and an offset within the segment (0 to 0FFFFH), as shown below.

physical_segment_number : offset_within_segment

�Examples�

0:0 Offset address 0 in physical segment #0.
0FFH:0FFFFH Offset address 65535 in physical segment #255.
CSR:1000H Address 1000H in the code segment indicated by CSR.
TSR:1000H Address 1000H in the table segment indicated by TSR.
DSR:1000H Address 1000H in the data segment indicated by DSR.

However, the offset within a segment is sometimes coded alone as an address where
there is no chance for confusion. In particular, an address and an offset within a
segment are the same thing when programming for a device that does not access multiple
segments or when a program exists entirely within one segment.

Physical segments and logical segments
For the nX-8/500S, blocks of 64K bytes in memory space are called physical segments,
but this manual often simply calls them segments. Blocks allocated to memory by a
program are also called segments, but these are specifically logical segments.

Chapter 1. Architecture

This chapter explains the basic architecture of the nX-8/500S. The basic
architecture is the major functional specification of the nX-8/500S. Any
microcontroller utilizing this core will have the same functions or a subset of them.

Chapter 1 Architecture
Overview

nX-8/500S Instruction Manual Chapter 1 1

1-1. Overview

1-1-1. Overview Of OLMS-66K Series And nX-8/500S Core

The OLMS-66K Series of devices are single-chip microcontrollers that integrate Oki Electric's
original 16-bit CPU as their core with various peripheral circuits. Currently the OLMS-66K
Series provides the target cores listed below. This series has expanded with improvements in
processing efficiency in the CPU cores while program compatibility has been maintained.

The nX-8/500S core maintains upward compatibility at the basic assembler level with the nX-
8/200 and nX-8/400 cores, but adds instructions and speeds up frequently used instructions. At
the same time is extends the accessible memory space and adds addressing modes.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Core Device Description
~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
nX-8/100 MSM66101 Reduced instruction version of nX-8/200.
nX-8/200 MSM66201/207 Reduced instruction version of nX-8/300.
nX-8/300 MSM66301 First core of OLMS-66K series.
nX-8/400 MSM66417 High-speed version of nX-8/200.
nX-8/500S MSM66556/589 Basic assembly language level upward compatibility with

nX-8/200 to nX-8/400.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The nX-8/500S centers its processing around its accumulator and register set.  It provides nearly
identical functions for byte data processing and word data processing.  A flag (the data
descriptor) determines which type of data is being calculated in the accumulator.  Thus the same
instruction codes provide functions that are the same for byte data and word data calculations, but
are switched by the state of the data descriptor flag.

Instruction codes are configured in 8-bit units, with lengths of 1 to 6 bytes.  Highly efficient
programs can be coded by making use of both native instructions for frequent types of processing,
and composite instructions for a wide variety of addressing modes.

Memory of the nX-8/500S is split into program memory space and data memory space.  Each
space can be 16M bytes, configured as 256 physical segments of 64K bytes each.  Segments are
specified by three segment registers.  Code memory also has a vector type area for resets,
interrupts, and 1-byte calls, and an ACAL area for 2-byte calls.  Segments of data memory are
configured as 256 pages of 256 bytes each.  More efficient addressing is provided for the SFR
page, in which peripheral function control registers are located, and the fixed page and current
page.



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual2

1-2. CPU Resources And Programming Model

This section describe registers and memory configurations and their roles as CPU resources used in
programming.

1-2-1. Registers

The nX-8/500S utilizes processing methods centered around an accumulator and register sets.
The register sets includes a local register set for storing mainly data and a pointing register set for
mainly storing addresses.  In addition to these, the nX-8/500S has registers for controlling
program flow and registers for controlling memory, which together make up the programming
model for registers.  This section lists the registers used in programs and then describes the
functions of each in detail.

■ Accumulator

Needed for calculations. A(ACC)

■ Control registers (CR)

This register group controls program flow and stores its current state.

Program Status Word PSW
Program Counter PC
Local Register Base LRB
System Stack Pointer SSP

■ Pointing registers (PR)

There are eight pointing register sets, each with four 16-bit registers X1, X2, DP, and USP.  The
pointing register sets store memory addresses for indirect addressing.  They also provide the
same functions for word calculations as extended local registers, so they can be used as data
registers too.

Index Register 1 X1
Index Register 2 X2
Data Pointer DP
User Stack Pointer USP

■ Local registers (ER)
There are 256 local register sets, each with eight 8-bit registers.  Each two adjacent 8-bit
registers comprise an extended local register (ERn) for processing word data.  This data register
group is used for storage and calculations of byte and word data.

Extended local register #0 ER0
Extended local register #1 ER1
Extended local register #2 ER2
Extended local register #3 ER3

15 8 7 0

15 8 7 0

15 8 7 0

15 8 7 0

R1 R0
R3 R2
R5 R4
R7 R6



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  3

■ Segment registers

These three 8-bit registers each select a physical segment that contains program code, read-only
data, and read/write data respectively.  For devices with limited memory capacity, the number of
bits implemented in the actual registers may be correspondingly limited.  Some devices do not
even implement segment registers.

Code Segment Register CSR
Table Segment Register TSR
Data Segment Register DSR

■ ROM window control register

This 8-bit register is used to open a ROM window.

ROMWIN

1-2-1-1. Accumulator (A)

A

The accumulator is a 16-bit register around which calculations are centered.  It can process
words and bytes data.  The low byte of the accumulator (AL) can also specify a bit in a bit array.
The accumulator is normally accessed by accumulator addressing.  However, because it is
allocated as a word register in SFR space, it can also be manipulated with SFR addressing (sfr
ACC).  The accumulator's value immediately after a reset is 0.  After an interrupt, the
accumulator's value is automatically pushed on the stack.  When an RTI instruction is executed,
that value is popped from the stack and stored back in A.

■ Example■Accumulator usage

L A,WORD_VAR ; Word instruction (A←WORD_VAR)

LB A,BYTE_VAR ; Byte instruction (AL←BYTE_VAR)

MB C,A.3 ; Bit instruction (C←A.3)

SBR BIT_ARRAY ; Bit array instruction (AL is bit specifier)

MOV ACC,BASE[X2] ; SFR addressing (ACC←(BASE+X2))

7 0

7 4 3 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AH AL



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual4

1-2-1-2. Control Registers (CR)

The control register group controls program flow and stores its current state.  Each 16-bit
register has a specific function.  The information stored in these registers is often collectively
called the program context.

1-2-1-2-1. Program Status Word (PSW)

PSW

The PSW is configured as flags and fields that store and specify program status.  The flag states
can be tested with conditional branch instructions.  The PSW is allocated as a word register in
the SFR area, so it can also be accessed with SFR addressing (sfr APSW).  After an interrupt,
PSW contents are automatically pushed on the stack.  When an RTI instruction is executed,
those contents are popped from the stack and stored back in the PSW.

The high byte of the program status word (PSWH) consists of five flags that store the states of
CPU calculation results, one flag that indicates the data type in the accumulator, and two flags
that control interrupts.

The low byte of the program status word (PSWL)  consists of a flag for multiply-accumulate
calculations, a field that specifies the size of the common area, a field that selects the pointing
register set, and two flags that are for the user.

The operation of each flag and field is described below.

C Carry flag (bit 15)
The carry flag stores the carry or borrow from unsigned calculations.  It is set to 1 when the
most significant bit in a arithmetic or comparison instruction generated a carry or borrow.  It is
reset to 0 in all other cases.  The most significant bit is bit 15 for word calculations and bit 7 for
byte calculations.  The carry flag is also used as a bit accumulator for bit moves and bit logical
operations.  The SC and RC instructions are provided to set and reset the carry flag.

Z Zero flag (bit 14)
The zero flag indicates if the result of a calculation was 0.  It is set to 1 when the execution result
of any calculation instruction (such as arithmetic, logical, comparison, and accumulator data
move instructions) or the object bit of any bit manipulation is zero.  It is reset to 0 in all other
cases.

HC Half-Carry flag (bit 13)
The half-carry flag is provided for implementing decimal arithmetic.  It is set to 1 when bit 3 in a
arithmetic or comparison instruction generated a carry or borrow.  It is reset to 0 in all other
cases.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C Z HC DD S MIP OV MIE MAB F1 BCB1 BCB0 F0 SCB2 SCB1 SCB0

PSWH PSWL



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  5

DD Data Descriptor (bit 12)
The data descriptor indicates the type of data in the accumulator (A).  It is a flag that determines
the type of calculation for which the accumulator (A) will be used.  It indicates word data when
1, and byte data when 0.  The SDD and RDD instructions are provided to set and reset the data
descriptor.

S Sign flag (bit 11)
The sign flag indicates the sign of calculation results.  It is set to 1 when the sign bit (most
significant bit) of the execution result of an arithmetic, comparison, or logical calculation was 1.
It is reset to 0 in all other cases.  The most significant bit is bit 15 for word calculations and bit 7
for byte calculations.

MIP Mask Interrupt Priority flag (bit 10)
The mask interrupt priority flag controls the priority function of maskable interrupts.  It enables
the priority function when 1, and disables the priority function when 0.

OV Overflow flag (bit 9)
The overflow flag stores the carry or borrow from signed calculations.  It is set to 1 when the
result of a arithmetic or comparison instruction exceeds the range that can be expressed with 2's
complement numbers.  It is reset to 0 in all other cases.  The range is −32767 to +32767 for
word data, and −128 to +127 for byte data.

MIE Mask Interrupt Enable flag (bit 8)
The mask interrupt enable flag controls whether all maskable interrupts are enabled or disabled.
It enables interrupts when 1, and disables interrupts when 0.  The EI and DI instructions are
provided to set and reset MIE.

MAB Multiply-Accumulate Register Bank flag (bit 7)
The multiply-accumulate register bank flag specifies the bank of registers used for multiply-
accumulate calculations (MAC instruction).

F1,F0 User flags 1, 0 (bit 6, bit 3)
The user flags are available for the user in programs.  Programs can be written such that these
flags are automatically updated in the PSW after interrupts.

BCB1-0 Bank Common Base (bit 5 to 4)
The bank common base specifies the last address of the area that is common between segments.
The table below shows the relation between these bits and the selected common area.

No. BCB
Value

Common Area Range

1 0
0 0 0 0 to 03FFH
1 0 1 0 to 1FFFH
2 1 0 0 to 3FFFH
3 1 1 0 to 7FFFH



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual6

SCB2-0 System Control Base (bit 2 to 0)
The system control base selects the pointing register set.  The table below shows the relation
between these bits and the selected pointing register set.

No. SCB Value
2 1 0

Addresses of Pointing
Register Set

0 0 0 0 0200H to 0207H
1 0 0 1 0208H to 020FH
2 0 1 0 0210H to 0217H
3 0 1 1 0218H to 021FH
4 1 0 0 0220H to 0227H
5 1 0 1 0228H to 022FH
6 1 1 0 0230H to 0237H
7 1 1 1 0238H to 023FH

1-2-1-2-1-1. How Instructions Change PSW Flags

The next page lists the instructions that change PSW flags when executed.  However, the list
basically excludes instructions that directly write to PSW or PSWH (such as instructions with sfr
addressing).  The table shows the flag name where the flag changes.  It shows 1 where the flag
is set and 0 where the flag is reset.  It is blank where the flag does not change.



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  7

■ How instructions change PSW flags

Flag ChangedInstruction
Type

Mnemonics
C Z S OV HC DD

Move
L, LB
CLR, CLRB (if destination is A)

Z DD

LC, LCB Z
Increment/Decrement

INC, INCB, DEC, DECB Z S OV HC
Multiplication

MUL, MULB, SQR, SQRB Z
Division

DIV, DIVB C Z
DIVQ C Z OV

Arithmetic/Comparison
NEG, ADD, ADC, SUB, SBC
NEGB, ADDB, ADCB, SUBB, SBCB
CMP, CMPB, CMPC, CMPCB

C Z S OV HC

Logical
AND, OR, XOR
ANDB, ORB, XORB

Z S

Sign Extend
EXTND S 1

Bit Manipulation/Bit Test
SB, RB, SBR, RBR, TBR Z

DD Manipulation
SDD, RDD DD

Carry Manipulation
SC, RC C

Bit Move To Carry
MB, MBR (if destination is C) C

Logical With Carry
BAND, BOR, BXOR
BANDN, BORN

C

Rotate/Shift With Carry
ROL, ROR, SLL, SRL, SRA
ROLB, RORB, SLLB, SRLB, SRAB

C

Return From Interrupt
RTI C Z S OV HC DD

Pop Data To PSW
POP (if operand is PSW or CR) C Z S OV HC DD

Reset
BRK 0 0 0 0 0 0



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual8

1-2-1-2-2. Program Counter (PC)

PC

The PC is a 16-bit counter that stores the address of the program code to be executed next.  It
increments immediately after the program code is fetched from program memory.  Repetition of
this operation causes the flow of program execution.  Branch instructions set the PC to new
addresses of program code.

The PC exists as an independent register, and is not allocated in SFR space.  The PC is
overwritten by execution of branch instructions, but you do not need to be especially aware of the
PC.

Immediately after a reset, the PC value will become the contents of the reset vector.  After an
interrupt, the address at which execution is to resume will be automatically pushed on the stack.
That value will be popped back into the PC when an RTI instruction is executed.

1-2-1-2-3. Local Register Base (LRB)

LRB

The LRB is a 16-bit register.  Its high 8 bits and low 8 bits have independent functions.

The high 8 bits of the LRB (LRBH) specify the location of the current page.  The current page is
one of the 256 pages in the data segment specified by DSR.  A single page is a 256-byte space
that starts at a page boundary.  The starting address of the current page is given by LRBH×100H.
Current page addressing (off Dadr) and current page SBA area addressing (sbaoff Badr) are
provided for accessing the 256 bytes of the current page specified by LRBH.

The low 8 bits of the LRB (LRBL) specify the location of the local register set.  The local
register set is allocated in 8-bit units within the 2K bytes between offset 200H and 9FFH of
physical segment #0 (0:200H to 0:9FFH).  The starting address of the local register is given by
LRBL×8+200H.  Local registers are allocated in order R0, R1, R2, ..., R7 from this starting
address.  Local register addressing (Rn, ERn) is provided for accessing the local registers
specified by LRBL.

LRB is allocated as a word register in SFR space, so it can be manipulated using SFR addressing.
The value of LRB is undefined after reset, so its value should be set soon after program execution
begins.  If local register addressing or current page addressing is used before this, then an
undefined memory address will be accessed.  After an interrupt, the LRB's value is
automatically pushed on the stack.  When an RTI instruction is executed, that value is popped
from the stack and stored back in LRB.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LRBH LRBL



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  9

1-2-1-2-4. System Stack Pointer (SSP)

SSP

The SSP is a 16-bit register that stores the top stack address of the hardware stack.  The
hardware stack is a pushdown stack for pushing and popping registers upon execution of interrupt
process transfers/returns, calls/returns, and PUSHS/POPS instructions.  The SSP stores the top
(lowest) address of this stack.  The SSP is automatically decremented and incremented during
execution processing.

Data is normally pushed on and popped off the stack in word units.  When a word value is
pushed on the stack, the word data is written to the stack address specified by SSP, and then SSP
is decremented by 2.  When a word value is popped off the stack, SSP is incremented by 2, and
then the word data is read from the stack address specified by SSP.  Reads and writes to the
memory of this word data are affected by word boundaries, so even if the SSP value is odd, the
word data handled will be at the next lower even address.  Pushing and popping the stack
through SSP is always performed in accordance with these rules.

The hardware stack pointed to by SSP is always allocated in data segment #0 (0:0 to 0:0FFFFH).
To access the stack with RAM addressing other than that of stack manipulation instructions, the
DSR must be set to 0.

SSP is allocated as a word register in SFR space, so it can also be manipulated with SFR
addressing.  Immediately after reset, the value of SSP is 0FFFFH, the last address of memory.
If there is no memory up to address 0FFFFH, then the actual value for SSP must be set soon after
program execution begins.  If instructions that manipulate the stack are executed before then,
program operation will not be predictable.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual10

1-2-1-3. Pointing Registers (PR)

There are eight pointing register sets, each with four 16-bit registers X1, X2, DP, and USP.  The
pointing register sets store memory addresses for indirect addressing.  They also provide the
same functions for word calculations as extended local registers, so they can be used as data
registers too.

Index Register 1 X1
Index Register 2 X2
Data Pointer DP
User Stack Pointer USP ×8 sets

The pointing register sets are allocated in the 64 bytes starting from address 200H in the fixed
page of data memory space.  They are allocated in order #0, #1,..., #7 from low address to high.
Within each pointing register set, X1, X2, DP, and USP are allocated to memory in that order
from low address to high.

■ Pointing register sets in data memory

    Data Memory Space
0000h

15 0
0200H

200H X1
0240H

X2

DP

USP

208H X1

X2

DP

USP

⋅
⋅
⋅
⋅

238H X1

X2

DP

USP

240H

PR set #0

PR set #1

⋅
⋅
⋅
⋅
⋅
⋅

PR set #7

The pointing register set to be used is selected by the SCB field in the PSW.  The following
table shows the relation between SCB field values and the pointing register set selected.
Immediately after reset, pointing register set #0 will be selected.  The initial values of all
pointing registers are undefined.

15 8 7 0

PSW

SCB

0FFFFH



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  11

■ SCB field and pointing register set addresses

No. SCB Value
2 1 0

Pointing Register
Set Addresses

0 0 0 0 0200H to 0207H
1 0 0 1 0208H to 020FH
2 0 1 0 0210H to 0217H
3 0 1 1 0218H to 021FH
4 1 0 0 0220H to 0227H
5 1 0 1 0228H to 022FH
6 1 1 0 0230H to 0237H
7 1 1 1 0238H to 023FH

The pointing register sets overlap the first eight local register sets (R0, R1, ..., R7), which also
start from address 200H.  To ensure proper program execution, set SCB and LRBL
appropriately, such that the pointing registers and local registers do not overlap.

1-2-1-3-1. Addressing With Pointing Registers

Pointing register addressing modes are provided to access the contents of pointing registers.

■Example■Pointing register addressing

L A,X1 ; A←X1

ADD A,X2 ; A←A+X2

CMP DP,#1234H ; DP-1234H

ST A,USP ; A→USP

Index register 1 (X1) is used for indirect addressing ([X1]) where X1 itself specifies an address,
indirect addressing with 16-bit base (D16[X1]) where an optional address within 64K bytes
specifies a base address with X1 specifying an offset, and indirect addressing with 8-bit register
displacement ([X1+A], [X1+R0]) where X1 specifies a base address anywhere in 64K bytes with
an 8-bit register specifying an offset.

■Example■X1 indirect addressing

L A,[X1] ; X1 indirect addressing

ADD A,1234[X1] ; X1 indirect addressing with 16-bit base

SUB A,[X1+A] ; X1 indirect addressing with AL register displacement

AND A,[X1+R0] ; X1 indirect addressing with R0 register displacement



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual12

Index register 2 (X2) is used for indirect addressing with 16-bit base (D16[X2]) where an optional
address within 64K bytes specifies a base address with X2 specifying an offset.

�Example�X2 indirect addressing

ADD A,1234H[X2] ; X2 indirect addressing with 16-bit base

The data pointer (DP) is used for indirect addressing ([DP]) where DP itself specifies an address,
indirect addressing with post-increment/decrement ([DP+],[DP-]) where DP is automatically
incremented or decremented after the data access, and indirect addressing with 7-bit displacement
(n7[DP]) where DP specifies a base address anywhere in 64K bytes with an offset −64 to +63.

�Example�DP indirect addressing

L A,[DP] ; DP indirect addressing

ADD A,[DP+] ; DP indirect addressing with post-increment

SUB A,[DP-] ; DP indirect addressing with post-decrement

ADD A,-12[DP] ; DP indirect addressing with 7-bit displacement

The user stack pointer (USP) is used for indirect addressing with 7-bit displacement (n7[USP])
where USP specifies a base address anywhere in 64K bytes with an offset −64 to +63.

�Example�USP indirect addressing

L A,-12[USP] ; USP indirect addressing with 7-bit displacement

Like other byte objects, the low bytes of X1, X2, DP, and USP can be used as loop counter that
specify 1 to 256 loops.

�Example�Loop counter usage

DJNZ X1L,LOOP ; X1 low byte (X1L) is loop counter

DJNZ X2L,LOOP ; X2 low byte (X2L) is loop counter

DJNZ DPL,LOOP ; DP low byte (DPL) is loop counter

DJNZ USPL,LOOP ; USP low byte (USPL) is loop counter



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  13

1-2-1-4. Local Registers (ER)

There are 256 local register sets, each with eight 8-bit registers.  Each two adjacent 8-bit
registers comprise an extended local register (ERn) for processing word data.  This data register
group is used for storage and calculations of byte and word data.

Extended local register #0 ER0
Extended local register #1 ER1
Extended local register #2 ER2
Extended local register #3 ER3 ×256 sets

The local register sets are allocated in the 2048 bytes starting from address 200H in the fixed page
of data memory space.  They are allocated in order #0, #1,..., #255 from low address to high.
Within each local register set, R0 to R7 are allocated to memory in that order from low address to
high.

�Local register sets in data memory

    Data Memory Space
0000H

15 8 7 0
0200H

200H R1 R0

R3 R2

R5 R4

R7 R6
0A00H

208H R1 R0

R3 R2

R5 R4

R7 R6

⋅
⋅
⋅
⋅

9F8H R1 R0

R3 R2

R5 R4

R7 R6

0A00H

LR set #0

LR set #1

⋅
⋅
⋅
⋅
⋅

⋅
LR set #255

The local register set to be used is selected by the low byte of LRB (LRBL).  The starting
address of the local register set selected is given by LRBL× 8 + 200H.  Immediately after reset,
the value of LRBL is undefined, so there is no way to tell which local register set is selected.
The initial values of all local registers are undefined.

15 8 7 0

R1 R0
R3 R2
R5 R4
R7 R6

LRB

LRBL

0FFFFH



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual14

�LRBL value and local register set addresses

No. LRBL Value Local Register Set Addresses

0 0 0200H to 0207H
1 1 0208H to 020FH
2 2 0210H to 0217H
3 3 0218H to 021FH
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
254 254 09F0H to 09F7H
255 255 09F8H to 09FFH

The first eight local register sets overlap the pointing register sets (X1, X2, DP, USP), which also
start from address 200H.  To ensure proper program execution, set LRBL and SCB
appropriately, such that the local registers and pointing registers do not overlap.

1-2-1-4-1. Addressing With Local Registers

A byte-oriented local register addressing mode and word-oriented extended local register
addressing mode are provided to access the contents of local registers.

�Example�Local register addressing

LB A,R0 ; AL←R0

ADDB A,R3 ; AL←AL+R3

CMPB R6,#12 ; R6-12

STB A,R7 ; A→R7

�Example�Extended local register addressing

L A,ER0 ; A←ER0

ADD A,ER1 ; A←A+ER1

CMP ER2,#1234H ; ER2-1234H

ST A,ER3 ; A→ER3

For INCB and DECB instructions, R0 to R3 give more efficient instruction codes than R4 to R7.

�Example�INCB/DECB instructions

INCB R0 ; 1-byte instruction

DECB R3 ; 1-byte instruction

INCB R4 ; 2-byte instruction

DECB R7 ; 2-byte instruction



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  15

For DJNZ instructions, R4 and R5 give more efficient instruction codes for jumps in the range -
128 to -1.

�Example�Loop instructions

LOOP:
DJNZ R4,LOOP ; 2-byte instruction

DJNZ R0,LOOP ; 3-byte instruction

DJNZ R5,NEXT ; 3-byte instruction

NEXT:

For multiplication and division instructions, ER0, ER1, and R1 are used to store products,
dividends, quotients, and remainders.

�Example�Multiplication and division instruction

MUL obj ; <A,ER0>←A×obj

DIV obj ; <A,ER0>←A÷ obj

; ER1←<A,ER0> mod obj

MULB obj ; A←A×obj

DIVB obj ; A←A÷ obj

; R1←A mod obj

R0 is used as a 1-byte unsigned displacement for addressing with X1 as a base.

�Example�X1 indirect addressing with R0 register displacement

MOV A,[X1+R0] ; A←(X1+R0)

INCB [X1+R0] ; (X1+R0)←(X1+R0)+1



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual16

1-2-1-5. Segment Registers

These 8-bit registers each select one of the 256 physical segments.  CSR and TSR point to
program memory space.  CSR and TSR do not exist in devices with just one segment in program
memory space.  DSR points to data memory space.  DSR does not exist in devices with just
one segment in data memory space.

1-2-1-5-1. Code Segment Registers (CSR)

CSR

The CSR specifies which segment in program memory space contains the program code that is
currently executing.  It exists as an independent 8-bit register, so it is not allocated in SFR space.
Writes to the CSR are performed by interrupts and by FJ, FCAL, FRT, and RTI instructions.
The CSR cannot be written to by other methods.

A single segment has offset addresses 0 to 0FFFFH.  Address calculations to determine the
addressing of objects are performed with 16-bit offset addresses; overflows and underflows are
ignored.  Therefore, addressing alone will not change the CSR.  Similarly, the CSR will not be
changed if the PC overflows.  Thus, program execution cannot proceed across code segment
boundaries by any method other than those mentioned in the previous paragraph.  Immediately
after reset the CSR value will be 0.

When an interrupt occurs under the medium or large memory model, the current CSR will be
automatically pushed on the stack along with the PC.  The popped value will be restored to the
CSR upon execution of an RTI instruction.  (Refer to memory models.)

1-2-1-5-2. Table Segment Registers (TSR)

TSR

The TSR specifies which segment in program memory space contains table data.  It is an 8-bit
register allocated in SFR space, so it can be written by instructions that have SFR addressing.
Data in the table segment is accessed using ROM reference instructions (LC, LCB, CMPC,
CMPCB).  RAM addressing of the table segment can also be performed by using the ROM
window function.

A single segment has offset addresses 0 to 0FFFFH.  Address calculations to determine the
addressing of objects are performed with 16-bit offset addresses; overflows and underflows are
ignored.  Therefore, addressing alone will not change the TSR.  Immediately after reset the
TSR value will be 0.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  17

1-2-1-5-3. Data Segment Registers (DSR)

DSR

The DSR specifies which segment in data memory space contains data.  It is an 8-bit register
allocated in SFR space, so it can be written by instructions that have SFR addressing.  Data in
the data segment is accessed using RAM addressing.  The ROM window function opens a
window in this data segment through which the table segment can be accessed.

A single segment has offset addresses 0 to 0FFFFH.  Address calculations to determine the
addressing of objects are performed with 16-bit offset addresses; overflows and underflows are
ignored.  Therefore, addressing alone will not change the DSR.  Immediately after reset the
DSR value will be 0.

1-2-1-6. ROM Window Control Register (ROMWIN)

ROMWIN

ROMWIN has the function of opening a ROM window.  It is an 8-bit register allocated in SFR
space.  The lower 4 bits specify the starting address of the ROM window, and the upper 4 bits
specify the ending address.  The starting address will be ROMWIN3-0×1000H, and the ending
address will be ROMWIN7-4×1000H + 0FFFH.  For example, if 71H is written to ROMWIN,
then the ROM window will be 1000H to 7FFFH.  If the value written to the lower 4 bits is 0,
then the ROM window function will not operate.

ROMWIN may be written only once after reset.  Second and later writes will be ignored.
Immediately after reset, the value of ROMWIN will be 0, so the ROM window function will not
operate.  To use the ROM window function, it is recommended that you open the ROM window
soon after reset.

1-2-1-7. Special Function Registers (SFR)

Special function registers are a register group for controlling peripheral functions.  They are
allocated to addresses 0 to 1FFH in data memory space.  In other words, nX-8/500S utilizes the
concept of memory-mapped I/O.  Refer to the section on data memory space for details.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual18

1-2-2. Memory Space

The memory of nX-8/500S is split into program space and data space.  The configurations of
each of these spaces are described below.

1-2-2-1. Program Memory Space

Program memory space of nX-8/500S has a total capacity of 16M bytes, configured as 256
segments of 64K bytes each.  Program memory space contains executable instruction code
(program code) and read-only data (table data).

The program code being executed is specified as 24 bits: CSR determines the high 8 bits, and PC
determines the low 16 bits (CSR:PC).  The segment selected by CSR is called the code segment.
When instruction execution increments the PC or when relative jumps add displacements to the
PC, overflows and underflows are ignored.  This means that the CSR will not change.

The segment selected by TSR is called the table segment.  The table segment can be accessed
using table data addressing with the four instructions LC, LCB, CMPC, and CMPCB.  RAM
addressing can also access the table segment through use of the ROM window function.

A single segment has offset addresses 0 to 0FFFFH.  Address calculations to determine the
addressing of objects are performed with 16-bit offset addresses; overflows and underflows are
ignored.  Therefore, addressing alone will not change the TSR.

�Overview of program memory space

#0 #1 #m #n #255
0000H

Vector area

1000H
ACAL area

1800H

Instruction
code being
executed

ROM
Window

area

x000H

0 to 255 0 to 255 0 to 65535 y x

TSR CSR PC ROMWIN

yFFF

0FFFFH



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  19

1-2-2-1-1. Vector Table Area

The 74 bytes from address 0 to 49H in segment #0 (0:0 to 0:49H) in program memory space are a
vector table area for storing program process entry addresses (vectors) used after resets and
interrupts.  The 32 bytes from address 4AH to 69H (0:4AH to 0:69H) are a vector table area for
storing program process entry addresses used when VCAL instructions are executed.

Each vector is a data word located at an even address.  When control transfers to a program
process, the CSR value is reset to 0 by hardware, selecting segment #0.  Therefore entry
addresses of program processes exist only in segment #0.

Program Memory Space

0000H

Reset Vector Area
0008H

Interrupt Vector Area Vector Table Area
004AH

VCAL Vector Area
006AH

1-2-2-1-1-1. Reset Vector Area

The first four entries in the vector table are assigned as reset vectors corresponding to the sources
of resets.  Vector addresses and reset sources are as follows.

Vector Address Reset Source
0000H Reset pin (RES) input
0002H System reset instruction (BRK) execution
0004H Watchdog timer (WDT)
0006H Op-code trap (OPTRP)



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual20

1-2-2-1-1-2. Interrupt Vector Area

Interrupt sources differ depending on the peripheral functions of each device.  The interrupt
vector area is assigned one non-maskable interrupt (NMI) and a maximum 32 maskable
interrupts.

Vector Address Interrupt Source
0008H NMI pin input
000AH Maskable interrupt #1
000CH Maskable interrupt #2
⋅ ⋅
⋅ ⋅
⋅ ⋅
0048H Maskable interrupt #32

1-2-2-1-1-3. VCAL Table Area

The VCAL table area is a vector area for the 16 VCAL instructions (1-byte call instructions).
Vector addresses and their corresponding VCAL instructions are as follows.

Vector Address VCAL Instruction
004AH VCAL 4AH
004CH VCAL 4CH
004EH VCAL 4EH
0050H VCAL 50H
0052H VCAL 52H
0054H VCAL 54H
0056H VCAL 56H
0058H VCAL 58H
005AH VCAL 5AH
005CH VCAL 5CH
005EH VCAL 5EH
0060H VCAL 60H
0062H VCAL 62H
0064H VCAL 64H
0066H VCAL 66H
0068H VCAL 68H



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  21

1-2-2-1-1-4. Vector Table Coding Syntax

With the assembler, program process entry addresses are coded as labels in the operands of DW
directives.  An example program that defines the vector area is shown below.  If the vector area
other than the reset vector for reset pin (RES) input is not used for vectors, then it can be used for
ordinary program code.

;
;Reset Vector Table
;

CSEG AT 0000H

DW START ; Power on reset
DW BRK_RESET ; BRK instruction
DW WDT_RESET ; Watch dog timer overflow
DW OPTRP_RESET ; Opecode trap

;
;Interrupt Vector Table
;

DW NMI_ENTRY ; Non-maskable interrupt
DW INT0_ENTRY ; Maskable interrupt #1

⋅
⋅
⋅

DW INTN_ENTRY ; Maskable interrupt #n
;
;Vcal Vector Table
;

CSEG AT 004AH

VSUB0: DW SUB0 ; VCAL subroutine #0
VSUB1: DW SUB1 ; VCAL subroutine #1

⋅
⋅
⋅

VSUB15: DW SUB15 ; VCAL subroutine #15

;
; Start of main procedure
;

EXTRN DATA:_$$SSP ; Stack pointer initial address
START:

MOV SSP,#_$$SSP ; Set system stack pointer
⋅
⋅



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual22

1-2-2-1-2 ACAL Area

The 2K bytes at addresses 1000H to 17FFH of each segment in program memory space
(CSR:1000H to CSR:17FFH) are the ACAL area for placing the entry points of subroutines
called by ACAL instructions.  ACAL instructions are 2-byte instructions, so they are more
efficient that 3-byte CAL instructions.  An ACAL area exists in each physical segment.

�ACAL area in program memory space

#0 #1 #2 #255
0000H

1000H ⋅ ⋅ ⋅ ACAL area
1800H

1-2-2-1-3. ROM Window Area In Program Memory Space

The ROM window area is allows data in the table segment specified by TSR to be accessed using
RAM addressing (ROM window addressing).  It is a program memory area that can be seen
through a window opened in a data segment.  Table data at the same address value can be read
through the window, which can only be opened in areas that are not mapped to internal data
memory.  The range of the ROM window area is set with the ROM window function control
register (ROMWIN).

�ROM window area in program memory space

#0 #1 #2 #n #255
0000H

x000H

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

ROM
Window
Area

yFFFH

0FFFFH

ROMWIN
y x

TSR

0FFFFH



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  23

1-2-2-1-4. Internal And External Program Memory Areas

There are no logical differences in programming when using internal and external program
memory areas.  Use the linker to place program code in internal program memory areas, which
are implemented in the target device, and in external program memory areas, which are mounted
in the target system.

Internal program memory size depends on the device.  Refer to the user's manual of the target
device for details.



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual24

1-2-2-2. Data Memory Space

Data memory space of nX-8/500S has a total capacity of 16M bytes, configured as 256 segments of
64K bytes each.  Data memory space normally contains memory that is readable and writable.

The segment selected by DSR is called the data segment.  The data segment can be accessed using
RAM addressing.  RAM addressing can also access the table segment through use of the ROM
window function.

A single segment has offset addresses 0 to 0FFFFH.  Address calculations to determine the
addressing of objects are performed with 16-bit offset addresses; overflows and underflows are
ignored.  Therefore, addressing alone will not change the DSR.

The nX-8/500S provides several special areas in data memory space to raise coding efficiency.
These areas include special pages, such as the SFR, fixed, and current page, which allow addresses to
be specified as one-byte offsets within the page.  There is also an SBA area, which provides very
efficient code for the instructions SB, RB, JBS, and JBR.  If the programmer defines variables with
consideration to the location of data, then the assembler will select the optimal addressing for data
accesses.

Applications that use multiple data segments may need to exchange data between segments.  To
enable this exchange, nX-8/500S has a common area starting from address 0 in data memory.  The
SFR area, extended SFR area, and fixed page area always reside in the common area.

Local registers and pointing registers are located in data memory space.  These registers can also be
accessed with address specifications.

�Overview of data memory space

#0 #1 #n #255
0000H SFR Area
0100H Extended SFR Area
0200H Fixed Page Area
0300H

  Current page
  specification

ROM
Window

area

x000H

yFFFH

0 to 255 0 to 255 0 to 65535 y x

LRBH DSR Offset Calculation
Result

ROMWIN

Common Area

BC
B

Common

Range
0 0 to 03FFH
1 0 to 1FFFH
2 0 to 3FFFH
3 0 to 7FFFH

0FFFFH



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  25

1-2-2-2-1. SFR Area

The nX-8/500S maps special function registers (SFR) for controlling peripheral functions to
memory (memory-mapped I/O).  The SFR area is the area to which SFR are assigned.  It
covers addresses 0 to 0FFH (page 0) in data memory space.  This area resides in the common
area, so it can always be accessed regardless of the value of DSR.  The SFR area can be read
and written with ordinary RAM addressing, and it also allows SFR addressing for better coding
efficiency.

Special function registers include word registers, byte registers, bit registers, and combinations
thereof.  They also include read/write registers, read-only registers, and write-only registers.
Many important special-purpose registers, such as the accumulator (A) and program status word
(PSW), are also assigned to the SFR area.  There are addresses in the SFR area to which no SFR
is assigned, but the results of reading or writing these addresses are not guaranteed.

For details on the SFR and SFR functions in your target device, refer to the user's manual of that
device.

1-2-2-2-2. Extended SFR Area

The 256 bytes at addresses 100H to 1FFH (page 1) in data memory space are called the extended
SFR area.  Like the SFR area, the extended SFR area is assigned SFR registers for controlling
peripheral functions.  Except that it cannot be used with SFR addressing, it is identical to the
SFR area described above.

�SFR area and extended SFR area

Data Memory Space
0000H Page 0

SFR Area
0100H Page 1

Extended SFR Area
0200H Page 2

Fixed Page Area
0300H Page 3

⋅
⋅
⋅
⋅

Common Area

BC
B

Common

Range
0 0 to 03FFH
1 0 to 1FFFH
2 0 to 3FFFH
3 0 to 7FFFH



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual26

1-2-2-2-3. Fixed Page

The 256 bytes at addresses 200H to 2FFH (page 2) in data memory space are called the fixed
page.  The fixed page is for efficient fixed page addressing (fix Dadr).  The fixed page can also
be read and written with ordinary RAM addressing.  Along with the SFR area and extended SFR
area, the fixed page area resides in the common area, so it can be accessed regardless of the value
of DSR.

1-2-2-2-3-1. Area Available For Pointing Registers

The 64 bytes starting from address 200H in the fixed page area are allocated eight pointing
register sets.  The pointing register area can also be used as ordinary memory when it is not
being used as pointing registers.

The pointing register sets overlap the first eight local register sets, which also start at address
200H.

1-2-2-2-3-2. Fixed Page SBA Area

The 64 bytes at addresses 2C0H to 2FFH in the fixed page area are called the fixed page SBA
area.  As for the current page SBA area, the four instructions SB, RB, JBS, and JBR have
efficient instruction codes for accessing the 512 bits in the fixed page SFR area.

�Fixed Page Configuration

       Data Memory Space
0000H Page 0

SFR Area

0100H Page 1
Extended SFR Area

0200H Page 2 0200H X1
Fixed Page Area X2

DP
0300H Page 3 USP

X1
⋅
⋅ USP
⋅ X1
⋅ X2

DP
USP

0240H

02C0H

0300H

Fixed page SBA area
(64 bytes=512 bits)

PR Set #0

⋅
⋅
⋅
⋅

PR Set #7

Area allowed for
pointing register
sets
(8×8=64 bytes)

Area for efficient
access by SB, RB,
JBS, JBR instructions



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  27

1-2-2-2-4. Current Page

Each segment of data memory space is divided into 256 pages.  Each page is 256 bytes starting
from a 256-byte boundary (xx00H).  Addresses for one page in the current data segment can be
specified as 1-byte offsets within the page.  This page is called the current page.  The location
of the current page in the data segment is specified by the high byte of the local register base
(LRBH).

The nX-8/500S provides current page addressing (off Dadr or  Dadr) and current page SBA area
addressing (sbaoff Badr or  Badr) for the 256 bytes of the current page.

1-2-2-2-4-1. Current Page SBA Area

The 64 bytes at addresses xxC0H to xxFFH in the current page are called the current page SBA
area.  As for the fixed page SBA area, the four instructions SB, RB, JBS, and JBR have efficient
instruction codes for accessing the 512 bits in the current page SFR area.

�Current Page Configuration

Current Data Segment
0000H Page 0 SFR Area

0100H
Page 1 Extended SFR Area

0200H
Page 2 Fixed Area xx00H

0300H
Page 3

⋅
⋅
⋅
⋅
⋅

0 to 255 Page n

LRBH ⋅
⋅
⋅
⋅
⋅
⋅
⋅ xxBFH

⋅ xxC0H

⋅
⋅

Page 253 xxFFH

Page 254 240H yy00H

Page 255

0 to 255

DSR

Area for efficient
access by SB, RB,
JBS, JBR
instructions

Current Page
SBA Area
(64 bytes
= 512 bits)

Current Page
(256 bytes)

0FFFFH



Chapter 1  Architecture
CPU Resources And Programming Model

Chapter 1 nX-8/500S Instruction Manual28

1-2-2-2-5. Area Available For Local Registers

The 256 local register sets are allocated to the 2,048 bytes starting from address 200H in data
segment #0.  Any one set can be used as local registers by setting LRBL.  The local register
area can also be used as ordinary memory when it is not used as local registers.

The first eight local register sets overlap the pointing register sets, which also start at address
200H.

�Local register area in data memory space

0000H
Page 0 SFR Area

0100H
Page 1

Extended
SFR Area

0200H
Page 2 Fixed Area

0200H

0300H
Page 3

0400H
Page 4

0500H
Page 5

0600H
Page 6

0700H
Page 7

0800H
Page 8

0900H
Page 9

0A00H

1-2-2-2-6. ROM Window Area In Data Memory Space

For accessing data in the table segment specified by TSR using RAM addressing (ROM window
addressing), an area exists as a window opened in the data segment.  By opening a window in an
area not mapped to internal data memory, a program can read table data at the same address
values.  The range of the ROM window area is set by the ROM window control register
(ROMWIN).

�ROM window area in data memory space

#0 #1 #2 #n #255
0000H

x000H

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

ROM
Window
Area

yFFFH

ROMWIN
y x

DSR

0FFFFH

ER0

ER1

ER2

ER3

ER0

ER3

ER0

ER1

ER2

ER3

Area available for
local registers
(8×256=2K bytes)

LR Set #0

⋅
⋅
⋅
⋅

LR Set #255

0A00H



Chapter 1  Architecture
CPU Resources And Programming Model

nX-8/500S Instruction Manual  Chapter 1  29

1-2-2-2-7. Common Area

The nX-8/500S provides a common area in data memory space for exchanging data between
segments.  The common area is common to all segments.  It is located in low memory of each
segment starting from offset address 0.  The range of the common area is set by the value in the
BCB field of the PSW.  The relation between the BCB value and the common area selected is as
shown below.

No. BCB
value

Common Area Range

1 0
0 0 0 0 to 03FFH
1 0 1 0 to 1FFFH
2 1 0 0 to 3FFFH
3 1 1 0 to 7FFFH

The common area always includes the SFR area, extended SFR area, and fixed page, so they can be
accessed regardless of the value of DSR.

1-2-2-2-8. Other Memory

1-2-2-2-8-1. EEPROM Area

Internal EEPROM may be allocated to addresses 4000H to 6000H of data segment #0.  Refer to the
user's manual of a target device that has EEPROM for its programming control functions.

1-2-2-2-8-2. Dual Port RAM Area

Internal dual port RAM may be allocated to addresses 6000H to 8000H of data segment #0.
Refer to the user's manual of a target device that has dual port RAM for its control functions.

1-2-2-2-9. Internal And External Data Memory Areas

There is no logical difference between programming for internal data memory and external data
memory.  Use the linker to optimally assign data to internal data memory areas of the target
device and external data memory areas mounted in the target system.

The size of internal data memory differs depending on the device.  Refer to the user's manual of
your target device for details.



Chapter 1  Architecture
Data Types

Chapter 1 nX-8/500S Instruction Manual30

1-3. Data Types

This section describes the types of data that can be used with nX-8/500S instructions.

Unsigned byte
The unsigned byte data type can be handled by byte instructions.  Its range is 0 to 255.  When
arithmetic calculations on unsigned byte data cause overflow or underflow from the 0 to 255
range, the carry (CY) will be set to 1 and the result will be the value of the modulo 256 operation.
Logical calculations on unsigned byte data are performed on each bit.  Bit positions in one byte
of data are assigned numbers such that the MSB is bit 7 and the LSB is bit 0.

Signed byte
The signed byte data type can be handled by byte instructions.  It is expressed as 2's complement,
with the most significant bit recognized as the sign bit. Its range is -128 to 127.  When arithmetic
calculations on signed byte data cause overflow or underflow from the -128 to 127 range, the
overflow flag (OV) will be set to 1.

Unsigned word
The unsigned word data type can be handled by word instructions.  Its range is 0 to 65535.
The low byte (bits 7-0) of a word is allocated to the lower address in memory, while the high byte
(bits 15-8) is allocated to the higher address.  In data memory space the lower address at which
the low byte is located will always be an even address in order to keep word boundaries.  In
code memory space this restriction does not exist.  The address of word data will be the address
of that word's low byte.

When arithmetic calculations on unsigned word data cause overflow or underflow from the 0 to
65535 range, the carry (CY) will be set to 1 and the result will be the value of a modulo 65536
operation.  Logical calculations on unsigned word data are performed on each bit.  Bit positions
in one word of data are assigned numbers such that the MSB is bit 15 and the LSB is bit 0.

7 0

7 6 0

S

15 8 7 0



Chapter 1  Architecture
Data Types

nX-8/500S Instruction Manual Chapter 1  31

Signed word
The signed word data type can be handled by word instructions.  It is expressed as 2's
complement, with the most significant bit recognized as the sign bit.  Its range is −32768 to
+32767.  The low byte (bits 7-0) of a word is allocated to the lower address in memory, while
the high byte (bits 15-8) is allocated to the higher address.  In data memory space the lower
address at which the low byte is located will always be an even address in order to keep word
boundaries.  In code memory space this restriction does not exist.  The address of word data
will be the address of that word's low byte.

When arithmetic calculations on signed word data cause overflow or underflow from the −32768
to +32767 range, the overflow flag (OV) will be set to 1.

Unsigned long word
The unsigned long word data type is used for multiplication (MUL instruction) and division (DIV
and DIVQ instruction).  Its range is 0 to 4,294,967,295.  It expresses the product of a 16-
bit×16-bit multiplication or the dividend and quotient of a 32-bit ⁄ 16-bit division.

Bit
The bit data type is accessed by bit manipulation instructions.  It takes the values 0 and 1.  It
can express all bits in memory and bit-type registers.  Bit data is specified in operands by
appending a bit position specifier 0 to 7 to addressing of a byte-type register or memory.  Moves,
logical calculations, and bit test and jump operations can be performed on accessed bits.

Bit array
The bit array data type is handled by bit manipulation instructions with register indirect bit
specifications (MBR).  A bit array is a maximum 256 bits (32 bytes) starting from a byte
boundary in memory specified as the instruction operand.  Each element of the array is bit data.
The array is allocated to memory as bytes starting from bit 0 in 8-bit increments in the direction
of higher addresses.  The bits in each byte are allocated in sequence with the smallest specifier
assigned to the LSB and the largest specifier assigned to the MSB.

15 14 8 7 0

S

31 24 23 16 15 8 7 0

A ER0

7 6 5 4 3 2 1 0

255 248 15 8 7 0



Chapter 1  Architecture
Address Allocation

Chapter 1 nX-8/500S Instruction Manual32

1-4. Address Allocation

Address allocation in memory is performed in both byte units and bit units.

Byte addresses are individual addresses allocated to all bytes in memory.  A 64K-byte space is
allocated 65535 addresses from a low address of 0 to a high address of 0FFFFH.  The range of
complete addresses including segment addresses is 0:0 to 0FFH:0FFFFH.

Bit addresses are individual addresses allocated to all bits in memory.  A 64K-byte space is
allocated 524288 addresses from a low address of 0 to a high address of 7FFFFH.  The bit
addresses in each byte are assigned such that the lowest address is the LSB and the highest
address is the MSB.  If a byte is at byte address addr, then the bit address of its LSB is addr×8.
The range of complete addresses including segment addresses is 0:0 to 0FFH:7FFFFH.

The nX-8/500S has two independent spaces, program memory space and data memory space.
Each of these are allocated both byte addresses and bit addresses as explained above.  Bit
addresses in program memory space correspond to bits in the table segment opened through the
ROM window.

■Byte addresses and bit addresses

7 6 5 4 3 2 1 0

0000H 7H 6H 5H 4H 3H 2H 1H 0H

0001H 0FH 0EH 0DH 0CH 0BH 0AH 9H 8H

0002H 17H 16H 15H 14H 13H 12H 11H 10H

0003H 1FH 1EH 1DH 1CH 1BH 1AH 19H 18H

0004H 27H 26H 25H 24H 23H 22H 21H 20H

0005H 2FH 2EH 2DH 2CH 2BH 2AH 29H 28H

37H 36H 35H 34H 33H 32H 31H 30H

0FFFCH 7FFE7H 7FFE6H 3DH 3CH 3BH 3AH 39H 38H

0FFFDH 7FFEFH 7FFEEH 7FFEDH 7FFECH 7FFEBH 7FFEAH 7FFE9H 7FFE8H

0FFFEH 7FFF7H 7FFF6H 7FFF5H 7FFF4H 7FFF3H 7FFF2H 7FFF1H 7FFF0H

0FFFFH 7FFFFH 7FFFEH 7FFFDH 7FFFCH 7FFFBH 7FFFAH 7FFF9H 7FFF8H

Byte address

Bit position



Chapter 1  Architecture
Word Boundaries

nX-8/500S Instruction Manual Chapter 1  33

1-5. Word Boundaries

Data memory of the nX-8/500S has word boundaries (word alignment).  Word boundaries
restrict word memory accesses to even addresses.  For the nX-8/500S, a word memory access to
an odd address will actually access the word data located at the next lower address.  In other
words, word data that extends across a word boundary cannot be read.  Looked at another way,
word data in data memory space must be arranged to follow word boundaries.

�Word boundaries in data memory space

L A, 200H ; ①A←1234H (AH←contents of address 201H, AL←contents of address 200H)

L A, 201H ; ②A←1234H (AH←contents of address 201H, AL←contents of address 200H)

200H 34H
201H 12H

When memory at either 200H or 201H is read as a
word, these contents (1234H) will be read, as
explained above.

Word boundaries do not exist in program memory space.  They also do not exist in program
memory space accessed through the ROM window (table segment).  This operational difference
between data memory space and program memory space arises due to differences in address
generation hardware.

(1)
(2)



Chapter 1  Architecture
ROM Window Function

Chapter 1 nX-8/500S Instruction Manual34

1-6. ROM Window Function

Compared to the addressing modes and instructions available for accessing data memory, those
available for accessing the table segment in program memory space are severely restricted.
There are only four instructions:  LC, LCB, CMPC, and CMPCB.  To get around this
restriction, the nX-8/500S provides a ROM window function.

The ROM window functions opens a window in an area that is not allocated to internal memory
of the data segment, and then views the table segment through that window.  When the ROM
window is opened, the table segment can be accessed by using RAM addressing at the same
offset address to read the data segment.  The ROM window can only be accessed by reads.
The results of a write operation to the ROM window are not guaranteed.

In order to open the ROM window, its lower and upper addresses must be set in the ROM
window control register (ROMWIN).  ROMWIN is an 8-bit register allocated in SFR space.
The lower 4 bits specify the starting address of the ROM window, and the upper 4 bits specify the
ending address.  The starting address will be ROMWIN3-0×1000H, and the ending address will
be ROMWIN7-4 ×1000H + 0FFFH.  For example, if 71H is written to ROMWIN, then the ROM
window will be 1000H to 7FFFH.  If the value written to the lower 4 bits is 0, then the ROM
window function will not operate.

ROMWIN may be written only once after reset.  Second and later writes will be ignored.
Immediately after reset, the value of ROMWIN will be 0, so the ROM window function will not
operate.  To use the ROM window function, it is recommended that you open the ROM window
soon after reset.



Chapter 1  Architecture
Memory Models

nX-8/500S Instruction Manual Chapter 1  35

1-7. Memory Models

The nX-8/500S implements the concept of hardware memory models.  Depending on the
memory model, accessible memory size, interrupt and corresponding RTI instruction operation,
and VCAL instruction operation will differ.  The hardware can also check whether or not FJ and
FCAL instructions with far code addressing and corresponding FRT instructions can be executed.

The memory model chooses the maximum accessible memory size from two possibilities:  64K
bytes and 64M bytes.  The combination of both choices for code memory space and data
memory space gives four memory models, as shown in the table below.  When accessing a 16M-
byte space, segment addresses will be valid for that space.  Writes are permitted to segment
registers that are not use by the specified memory model, but these values will not be used by the
hardware to specify segments.

Under the medium or large model, with 16M-bytes of code memory space, interrupts and VCAL
instructions will push both the PC and CSR on the stack.  Then when an RTI instruction returns
from processing an interrupt, the CSR will also be popped from the stack.  Also, the FRT
instruction must be used to return from a subroutine called by a VCAL instruction.

Under the small or compact model, with 64K-bytes of code memory space, FJ, FCAL, and FRT
instructions will cause an op-code trap.  The microcontroller will resume execution from the
vector address corresponding to resets when an op-code trap occurs.

Devices that have only the small model do not have a configuration for setting the memory model.
Only the first memory model setting made after reset is valid.  All devices assume the small
model by default immediately after reset.  Refer to the user's manual of your target device
regarding how to set the memory model.

The above information is summarized in the table below.

Model Max. Memory Segment Register Interrupts Instructions
Code Data CSR TSR DSR VCAL FJ,FCAL,FRT

Small 64K 64K - - - Near Near Op-code trap
Compact 64K 16M - - Valid Near Near Op-code trap
Medium 16M 64K Valid Valid - Far Far Executable
Large 16M 16M Valid Valid Valid Far Far Executable



Chapter 1  Architecture
Data Descriptor

Chapter 1 nX-8/500S Instruction Manual36

1-8. Data Descriptor (DD)

The nX-8/500S has a special flag called the data descriptor (DD).  The programmer must pay
attention to the DD flag when the type of data being handled changes during the flow of the
program.

This section first describes the meaning and use of DD, and then lists the instructions that affect
DD and the instructions affected by DD.

The dependence of each instruction on DD is shown in the "Flags" section of each instruction's
description in Chapter 3, under the heading "Flags affecting instruction execution."  The
"Description" section will also include the statement, "Execution of this instruction is limited to
when DD is 0/1."

1-8-1. Description And Use OF DD

The data descriptor (DD) is allocated to bit 12 of the PSW.  It is a flag that indicates the type of
data in the accumulator (A).  When DD is 0, it indicates byte data.  When DD is 1, it indicates
word data.

DD Accumulator

�Byte data 0 AL

�Word data 1 A

The type of calculations that use the accumulator (A) is determined by DD.  Instructions that
affect this flag are accumulator load instructions, clear instructions, and type conversion
instructions, as well as instructions that directly set and reset the flag.  Instructions affected by
this flag are basically those that leave calculation results in A and those that store the contents of
A.

In general, a program is made up of blocks that load data of some type in the accumulator,
perform several calculations of that type, and then store the results in memory.  If the type of
data to be loaded in A and then calculated is determined once, then further calculations and stores
should be performed with that same type.  In such cases, there is no need for the instruction
codes of calculation and store instructions to contain information about data type.  This has
allowed the nX-8/500S to efficiently increase the number of instructions implemented.

The flag that preserves the data type information determined by the accumulator load is DD.
Thus, instructions that load word data to the accumulator set DD to 1.  Instructions that load byte
data to the accumulator reset DD to 0.

L A, #1234H ; Sets DD to 1.

LB A, #12H ; Resets DD to 0.



Chapter 1  Architecture
Data Descriptor

nX-8/500S Instruction Manual Chapter 1  37

Further calculations performed on the accumulator will be affected by DD.  In the following
example, the word data at address VAR is added to A, and the result is stored as a word in
memory at VAR2.

...
L A, #1234H ; A←1234H Sets DD to 1.

ADD A,VAR ; A←A+VAR Executed when DD is 1.

ST A,VAR2 ; A→VAR2 Executed when DD is 1.

...
The following example shows the handling of byte data.  Byte data at address VAR is added to
AL, and the result is stored as a byte in memory at VAR2.

...
LB A, #12H ; AL←12H Sets DD to 0.

ADDB A,VAR ; AL←AL+VAR Executed when DD is 0.

STB A,VAR2 ; AL→VAR2 Executed when DD is 0.

...
In these two examples, ADD and ADDB actually have identical instruction codes.  ST and STB
also have identical instruction codes.  The difference is only the value of DD.  In the following
example, the ADDB and STB mnemonics are expressed for byte instruction operation (or so the
programmer hopes), but they will actually operate as word instructions.

...
L A, #1234H ; A←1234H Sets DD to 1.

ADDB A,VAR ; A←A+VAR Byte instruction operates as word.

STB A,VAR2 ; A→VAR2 Byte instruction operates as word.

...
If the programmer truly wants ADDB and STB to operate as byte instructions, then he needs to
change the value of DD as shown next.

...
L A, #1234H ; A←1234H Sets DD to 1.

RDD ; DD←0 Calculate with byte data.

ADDB A,VAR ; AL←AL+VAR Operates as byte.

STB A,VAR2 ; AL→VAR2 Operates as byte.

...
Conversely, to calculate with word data after loading byte data, the programmer can use the SDD
instruction to set DD to 1, or he can use the sign-extension type conversion instruction as shown
below.

...
LB A, VAR ; A←VAR Sets DD to 0.

EXTND ; A←(sign extension)AL Signed type conversion. Sets DD to 1.

ADD A,VAR2 ; A←A+VAR2 Operates as word.

ST A,VAR3 ; A→VAR3 Operates as word.

...
The programmer must look closely at whether DD must be explicitly set or reset at points where
calculations change between byte data and word data.  The assembler provides the USING
DATA directive in order to detect when  DD is inappropriate for instructions that reference DD.



Chapter 1  Architecture
Data Descriptor

Chapter 1 nX-8/500S Instruction Manual38

1-8-2. Instructions That Change DD

1-8-2-1.Instructions That Change DD As Part Of Their Function

In accordance with the philosophy explained in Section 1-8, "Description And Use Of DD,"
instructions that move data to the accumulator or sign-extend the accumulator will determine the
accumulator's data type.  Also, the programmer needs instructions that set and reset DD.  The
nX-8/500S instructions that change DD as part of their function are listed below.

�Instructions that set DD to 1

Mnemonic Operand CZSVHD D Function

L A,obj . Z. . . 1  . A ← obj, DD ← 1

CLR A . 1. . . 1  . A ← 0, DD ← 1

SDD . . . . . 1  . DD ← 1

EXTND . . S. . 1  . A15-7 ← A7, DD ← 1

�Instructions that reset DD to 0

Mnemonic Operand CZSVHD D Function

LB A,obj . Z. . . 0  . AL ← obj, DD ← 0

CLRB A . 1. . . 0  . AL ← 0, DD ← 0

RDD . . . . . 0  . DD ← 0

BRK 000000  . RESET, PC ←(Vector-table 0002H)

DD is always changed when these instructions are executed.  Flag changes are clearly shown to
be 0 or 1 under the “Flags” heading for each instruction of chapter 3 in the manual.

1-8-2-2. Other Instructions That Change DD

The PSW is allocated to SFR space.  DD can be written by accessing PSW and DD using byte
addresses and bit addresses.

�Example�Other instructions that change DD

MOV APSW,#0 ; Write PSW using byte address.

MOVB PSWH,#0 ; Write PSWH using byte address.

SB DD ; Set DD to 1 using bit address.

Depending on the operation, these instructions may or may not change DD.  Writes to DD in
these cases are not clarified in this manual's descriptions of flag changes ("Flags" heading for
each instruction of chapter 3).  These instruction are considered to just happen to have PSW  as
their object.



Chapter 1  Architecture
Data Descriptor

nX-8/500S Instruction Manual Chapter 1  39

1-8-3. Instructions Affected By DD

The instructions that operate in accordance with the data type of the accumulator, as described in
Section 1-8-1, "Description And Use Of DD," are shown in the table below.  These are nearly
all the instructions that have A as their first operand.

�Instruction executed when DD is 1 (word) �Instructions executed when DD is 0 (byte)

Mnemonic Operand CZSVHDD Function Mnemonic Operand CZSVHDD Function

ST A,obj .  . . . . .   1 obj ← A STB A,obj . . . . . .   0 obj ← AL

FILL A .  . . . . .   1 A←0FFFFH FILLB A . . . . . .   0 AL←0FFH

XCHG A, obj .  . . . . .   1 A←→obj XCHGB A, obj . . . . . .   0 AL←→obj

SLL A, width C. . . . .   1 C←[15    A     0]←0 SLLB A, width C. . . . .   0 C←[7  AL   0]←0

SRL 0→[15    A     0]→C SRLB 0→[7  AL   0]→C

SRA A15[15      A     0]→C SRAB A7→[7  AL  0]→C

ROL C←[15    A     0]←C ROLB C←[7  AL  0]←C

ROR C→[15    A     0] →C RORB C→[7  AL  0]→C

INC A . ZSVH.   1 A←A+1 INCB A . ZSVH.  0 AL←AL+1

DEC A←A-1 DECB AL←AL-1

SQR A . Z. . . .   1 <A,ER0> ← A × A SQRB A . Z. . . .   0 A ← AL × AL

ADD A,obj CZSVH.   1 A←A+obj ADDB A,obj CZSVH.  0 AL←AL+obj

ADC A←A+obj+C ADCB AL←AL+obj+C

SUB A ← A-obj SUBB AL ← AL-obj

SBC A ← A-obj-C SBCB AL ← AL-obj-C

CMP A-obj CMPB AL-obj

NEG A CZSVH.  1 A ← -A NEGB A CZSVH.  0 AL ← -AL

AND A,obj . ZS. . .   1 A←A ∩ obj ANDB A,obj . ZS. . .   0 AL←AL ∩ obj

OR A ← A ∪ obj ORB AL ← AL ∪ obj

XOR A ← A ∪ obj XORB AL ← AL ∪ obj

TJZ A, radr if A=0 then PC←radr TJZB A, radr . . . . . .   0 if AL=0 then PC←radr

TJNZ if A≠0 then PC←radr TJNZB if AL≠0 then PC←radr



Chapter 1  Architecture
Data Descriptor

Chapter 1 nX-8/500S Instruction Manual40

1-8-4. Pre-Fetched Instructions And DD

If DD is changed using an instruction described in Section 1-8-2-2, "Other Instructions That
Change DD," (for example, if DD is changed by performing a write with the address specification
as PSW in SFR space), and if the next instruction is one that is affected by DD, then a NOP must
be inserted before that next instruction.

�Example�NOP insertion
...
ANDB PSWH,#05H ; DD reset to 0 along with C, Z, HC, S, and OV.

NOP ; NOP is needed.

ADDB A,#12H ; Instruction is affected by DD.

...

Normal programming does not have many instances of changing DD using instructions described
in Section 1-8-2-2, "Other Instructions That Change DD."  They are limited to cases like the
example above, where other flag types are to be changed simultaneously.  Typically this would
be to set the PSW to an initial value with a single instruction.

The reason that a NOP is needed is as follows.  Before execution of one instruction is finished,
the nX-8/500S starts to fetch and decode the next instruction.  The value of DD is fetched along
with the instruction code at this point, so if the previous instruction does not change DD until its
last state, then the (final) value of DD when the previous instruction finishes executing will not be
the same as the value of DD that is fetched.  If the next instruction is affected by the value of
DD, then it will operate based on the DD value that was fetched.  If a NOP is inserted before
that instruction, then it will operate based on the correctly changed value of DD.

How this affects a program is explained below.  In the next example, the instruction immediately
after an RB instruction is an ADD instruction that references DD.  The programmer intends to
load the immediate value 1234H in A, and then add the byte data at address 300H to AL.
However, the ADDB instruction will operate not on byte data, but actually as an ADD instruction
for word data.  As a result, the word data at address 300H will be added to the accumulator.

...
L A, #1234H ; A←1234H, DD←1

RB DD ; DD←0

ADDB A, 300H ; Operates as word instruction “ADD  A,300H”

...
In order to avoid this, use the RDD instruction instead of an RB instruction.  The RDD
instruction was created specifically for manipulating DD.

...
L A, #1234H ; A←1234H, DD←1

RDD ; DD←0

ADDB A, 300H ; Operates as byte instruction as expected.
...



Chapter 1  Architecture
Data Descriptor

nX-8/500S Instruction Manual Chapter 1  41

Alternatively, insert an NOP before the instruction that references DD.
...
L A, #1234H ; A←1234H, DD←1

RB DD ; DD←0

NOP ; Next instruction fetched while NOP execution.

ADDB A, 300H ; Operates as byte instruction as expected.

...



Chapter 1  Architecture
Changing The Stack

Chapter 1 nX-8/500S Instruction Manual42

1-9. Changing The Stack

This section summarizes how the stack is changed by instructions and interrupts.  Refer to
Chapter 3 for details of each instruction.  For pushing/popping the register sets CR, ER, and PR,
this section illustrates only the case where the entire sets are pushed/popped at once.  The
sequence for pushing/popping the entire register set at once is identical to selecting the individual
registers to be pushed/popped.  The images shown are the locations in memory of registers when
ER and PR are pushed as register sets, and when an interrupt pushes CR as a register set.

�Push
CAL, SCAL, ACAL instructions
VCAL instruction (small/compact model)

Pop
RT instruction

�Push
FCAL instruction
VCAL instruction (medium/large model)

Pop
FRT instruction

�Push
Interrupt (small/compact model)

Pop
RTI instruction (small/compact model)

�Push
Interrupt (medium/large model)

Pop
RTI instruction (medium/large model)

�Push
PUSHS CR

Pop
POPS CR

�Push
PUSHS ER, PUSHS PR

Pop
POPS ER, POPS PR

SSP
after pushing

SSP
before

hiSSP
before

hi
PC

SSP
after pushing

SSP
after pushing

SSP
before

hi
--- CSR

SSP
before

hi
PC

SSP
after pushing

SSP
after pushing

SSP
before

hi
PSW

LRB

A
SSP

before
hi

PC
SSP

after pushing

SSP
after pushing

SSP
before

hi
PSW

LRB

A

--- CSR
SSP

before
hi

PC
SSP

after pushing

SSP
after pushing

SSP
before

hi
PSW

LRB
SSP

before
hi

A
SSP

after pushing

SSP
after pushing

SSP
before

hi
ER0 or X1

ER1 or X2

ER2 or DP
SSP

before
hi

ER3 or USP
SSP

after pushing



Chapter 1  Architecture
Instruction Code Format

nX-8/500S Instruction Manual Chapter 1  43

1-10. Instruction Code Format

This section explains native instructions and composite instructions, a feature of nX-8/500S
instruction code format.

1-10-1. Native Instructions And Composite Instructions

Instructions of the nX-8/500S are classified as native instructions or composite instructions based
on the background of their instruction codes.  Instructions that require high coding efficiency
and processing efficiency are implemented as native instructions.  Composite instructions
consist of a prefix code and suffix code.  The prefix code specifies the address being accessed.
The suffix code mainly specifies the operation.  This was one idea for implementing a wide
variety of addressing modes.  By having both native instructions and composite instructions, the
nX-8/500S instruction set is able to be both efficient and easy to code with.

Native instructions are instructions with 1 to 4 bytes of code.

1 to 4 bytes

Composite instructions consist of a 1 to 3 byte address specification field (prefix) and a 1 to 3 byte
operation specification field (suffix).

Prefix
1 to 3 bytes

Suffix
1 to 3 bytes

Prefixes can be word type or byte type.  Word prefix codes and byte prefix codes are listed
below.  Suffixes of word instructions are combined with word prefixes.  Suffixes of byte
instructions and bit instructions are combined with byte prefixes.

�Word Prefixes �Byte Prefixes

<word>
Word Prefix Instruction Code

<byte>
Byte Prefix Instruction Code∗∗

1st 2nd 3rd

Cycle
(Internal)

∗
1st 2nd 3rd

Cycle
(Internal)

A BC 2 A BC 2
ERn 64  +n 2 Rn 68  +n 2
PRn 60  +n 2 [X1] B0 4
[X1] A0 4 [DP] B2 4
[DP] A2 4 [DP-] B1 5
[DP-] A1 5 [DP+] B3 5
[DP+] A3 5 fix B4 fix8 4
fix A4 fix8 4 off B5 off8 4
off A5 off8 4 sfr B6 sfr8 4
sfr A6 sfr8 4 dir B7 dirL dirH 6
dir A7 dirL dirH 6 D16[X1] B8 D16L D16H 6
D16[X1] A8 D16L D16H 6 D16[X2] B9 D16L D16H 6
D16[X2] A9 D16L D16H 6 n7[DP] 9B n7 6
n7[DP] 8B n7 6 n7[USP] 9B 80  +n7 6
n7[USP] 8B 80 +n7 6 [X1+A] BA 6
[X1+A] AA 6 [X1+R0] BB 6
[X1+R0] AB 6 PSWL 8A 2

PSWH 9A 2



Chapter 1  Architecture
Instruction Code Format

Chapter 1 nX-8/500S Instruction Manual44

The instruction code table given for each instruction in Chapter 3 is shown as a single table for
native instructions.  For composite instructions, the suffix code table corresponding to the word
or byte prefix code table is shown.  When the function of an instruction that can be combined
from a prefix and suffix is identical to the function of a native instruction, the assembler will
generate the native instruction code.



Chapter 1  Architecture
Microcontrollers That Use The nX-8/500S Core

nX-8/500S Instruction Manual Chapter 1  45

1-11. Microcontrollers That Use The nX-8/500S Core

The functional specifications of microcontrollers the use the nX-8/500S core differ on the
following points.  Devices without these functions also exist.

- Peripheral circuits and allocation of registers in SFR space to control them.
- Accessible memory ranges and bit length of segment registers to control them (CSR, TSR,
DSR).
- Permitted memory models and structures for setting them.
- Internal program memory range.
- Internal data memory types and ranges.
- Control methods for special internal data memory (EEPROM programming methods, etc.).
- Multiply-Addition function (MAC instruction) and its flag in the PSW (MAB).

When program memory space only has segment #0, the device has the following limitations.

- CSR and TSR do not exist.
- FJ, FCAL, and FRT instructions, which transfer execution across code segments, do not exist.
- Medium and large memory models cannot be specified.

When data memory space only has segment #0, the device has the following limitations.

- DSR does not exist.
- The concept of common memory across data segments does not apply.
- BCB in the PSW can be used as user flags.
- Compact and large memory models cannot be specified.

Refer to the user's manual of your target device for the functional specifications of the above
items when you need this information to write programs.  However, when a function or structure
does not exist for your target device, it might not be alluded to in the user's manual if it seemed
unnecessary for explanations.





Chapter 2.  Addressing Modes
                                                                                   

This Chapter explains how to access registers and memory using nX-8/500S core
instructions.  The specific methods for these accesses are called addressing modes.
This chapter describes the types, functions, and syntax of addressing modes.



Chapter 2  Addressing Mode
Addressing Mode Types

nX-8/500S Instruction Manual Chapter 2  1

2-1. Addressing Mode Types

The nX-8/500S core has two independent memory spaces:  a data memory space and a program
memory space.  The nX-8/500S core addressing modes can be classified broadly to correspond
to these spaces.

Data memory space is normally configured from read/write memory (RAM), so it is also called
RAM space.  Addressing to this space is called RAM addressing.

Program memory space is normal configured from read-only memory (ROM), so it is also called
ROM space.  Addressing to this space is called ROM addressing.

ROM addressing can be further divided into immediate addressing for accessing from instructions
themselves, table data addressing for accessing data in ROM space, and program code addressing
for accessing programs in ROM space.

In addition, the nX-8/500S core has a special addressing called ROM window addressing.  This
addressing mode accesses table data in ROM space using RAM addressing.  It reads data in a
table segment through a window in a data segment opened by the program.

The above addressing mode types and their addressing are summarized below.

� Data Memory Space

� RAM Addressing
{ Register addressing
{ Page addresing
{ Direct addressing
{ Indirect addressing
{ Special bit addressing

� Program Memory Space

� ROM Addressinging

� Immediate Addressing
{ Immediate addressing

� Table Data Addressing
{ Direct addressing
{ Indirect addressing

� Program Code Addressing
{ Direct addressing
{ Relative addressing
{ Special code addressing
{ Indirect address

� ROM Window Space
{ ROM window addressing

RAM addressing, ROM addressing, and ROM window addressing are explained in order below.



Chapter 2  Addressing Mode
RAM Addressing

Chapter 2 nX-8/500S Instruction Manual2

2-2. RAM Addressing

RAM addressing is the addressing mode for addressing program variables in RAM space.

(1) Register Addressing

� Accumulator addressing A ....3
� Control register addressing PSW,LRB,SSP....4
� Pointing register addressing X1,X2,DP,USP....5
� Local register addressing ERn,Rn ....6
These various registers have dedicated addressing modes, and can also be addressed as data memory.

These modes are classified as register addressing and RAM addressing.

(2) Page Addressing

� SFR page addressing sfr Dadr ....7
� Fixed page addressing fix Dadr ....8
� Current page addressing off Dadr ....9

(3) Direct Addressing

� Direct Data Addressing dir Dadr .. 10

(4) Pinting register indirect addressing

� DP/X1 indirect addressing [DP],[X1] ..11
� DP indirect addressing with post-increment [DP+] ..12
� DP indirect addressing with post-decrement [DP-] ..13
� DP/USP indirect addressing with 7-bit displacement n7[DP],n7[USP]..14
� X1/X2 indirect addressing with 16-bit base D16[X1],D16[X2] ..15
� X1 indirect addressing with 8-bit register displacement [X1+A],[X1+R0] ..16

(5) Special bit area (SBA) addressing

� Fixed page SBA addressing sbafix Badr .. 17
� Current page SBA addressing sbaoff Badr .. 18



Chapter 2  Addressing Mode
RAM Addressing

Nx-8/500S Instruction Manual Chapter 2  3

A Accumulator Addressing

Function

For word-type instructions, this addressing mode accesses the contents of the accumulator (A).
For byte-type and bit-type instructions, this addressing mode accesses the contents of the low byte
of the accumulator (AL).

Syntax

The instruction mnemonic determines whether the addressed object is the contents of the
accumulator (A) or the contents of the low byte of the accumulator (AL).

Word format

L A ,#1234H
ST A ,VAR

Byte format

LB A ,#12H
STB A ,VAR

Bit format

MB C, A.3
JBS A.3 ,LABEL



Chapter 2  Addressing Mode
RAM Addressing

Chapter 2 nX-8/500S Instruction Manual4

PSW / LRB / SSP Control Register Addressing

Function

This addressing mode accesses the contents of registers.

Syntax

SSP System stack pointer
LRB Local register base
PSW Program status word
PSWH Program status word high byte
PSWL Program status word low byte
C Carry flag

The register name itself is coded as the operand.

Word format

FILL SSP
MOV LRB  ,#401H
CLR PSW

Byte format

CLR PSWH
INC PSWL

Bit format

MB C ,BITVAR



Chapter 2  Addressing Mode
RAM Addressing

Nx-8/500S Instruction Manual Chapter 2  5

X1 / X2 / DP / USP Pointing Register Addressing

Function

This addressing mode accesses the contents of pointing registers.

In this addressing mode, value of System Control Base (SCB) field in the PSW specifies one of
the 8 pointing registers (PR0 to PR7: every 8 bytes of 200H to 23FH in data memory.)

Syntax

X1 Index register 1
X2 Index register 2
DP Data pointer

USP User stack pointer
X1L Index register 1 low byte
X2L Index register 2 low byte
DPL Data pointer low byte
DP* Data pointer low byte

USPL User stack pointer low byte

* Only for the "JRNZ DP,radr" instruction, provided for compatibility with nX-8/100-400.

The register name itself is coded as the operand.

Word format

L A ,X1
ST A ,X2
MOV DP ,#2000H
CLR USP

Byte format

DJNZ X1L  ,LOOP
DJNZ X2L  ,LOOP
DJNZ DPL ,LOOP
DJNZ USPL ,LOOP
JRNZ DP ,LOOP



Chapter 2  Addressing Mode
RAM Addressing

Chapter 2 nX-8/500S Instruction Manual6

ERn / Rn Local Register Addressing

Function

This addressing mode accesses the contents of local registers.

In this addressing mode, value of the low byte of Local Register Base (LRB) specifies one of 256
local registers (every 8 bytes of 200H to 9FFH of data memory.)

Syntax

ER0 to ER3 Extended local registers
R0 to R7 Local registers

The register name itself is coded as the operand.

Word format

L A,ER0
MOV ER2, ER1
CLR ER3

Byte format

LB A, R0
ADDB R1, A
CMPB R2, #12H
INCB R3
RORB R4
MOVB R5, R6

Bit format

SB R0.0
RB R1.7
JBRS R7.3, LABEL



Chapter 2  Addressing Mode
RAM Addressing

Nx-8/500S Instruction Manual Chapter 2  7

sfr Dadr SFR Page Addressing

Function

This addressing mode specifies an offset within the SFR page (data memory addresses 0-0FFH)
with one byte in an instruction code.  The specified address can be accessed as word, byte, or bit
data.

Syntax

sfr address_expression
address_expression

An expression with the "sfr" addressing specifier is coded as the operand.  The "sfr" can be
omitted, but SFR page addressing will result only when the assembler recognizes that the
expression is an address in the SFR page.

Address symbols for each type of device are provided in the SFR.  Usually these symbols are
used for SFR accesses.
   

Word format

L A, sfr P0
L A, P0

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (→word boundary). However, there may be exceptions depending on the SFR.

Byte format

LB A, sfr P0
LB A, P0

Bit format

SB sfr P0.3
SB P0.3

SFR page

SFR page

SFR page

RAM
0000H

00xxH

00FFH

RAM
0000H

00xxH

00FFH

RAM
0000H

00xxH

00FFH



Chapter 2  Addressing Mode
RAM Addressing

Chapter 2 nX-8/500S Instruction Manual8

fix Dadr Fixed Page Addressing

Function

This addressing mode specifies an offset within the fixed page (data memory addresses 200-
2FFH) with one byte in an instruction code.  The specified address can be accessed as word,
byte, or bit data.

Syntax

fix address_expression
address_expression

An expression with the "fix" addressing specifier is coded as the operand.  The "fix" can be
omitted, but fixed page addressing will result only when the assembler recognizes that the
expression is an address in the fixed page.

Word format

L A, fix FIXVAR
L A, FIXVAR

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (→word boundary).

Byte format

LB A, fix FIXVAR
LB A, FIXVAR

Bit format

SB fix FIXVAR.3
SB FIXVAR.3

RAM
0200H

02xxH

02FFH

Fixed page

RAM
0200H

02xxH

02FFH

Fixed page

RAM
0200H

02xxH

02FFH

Fixed page



Chapter 2  Addressing Mode
RAM Addressing

Nx-8/500S Instruction Manual Chapter 2  9

off Dadr Current Page Addressing

Function

This addressing mode specifies an offset within the current page (data memory of one page of
256 as specified by the value of LRBH) with one byte in an instruction code.  The specified
address can be accessed as word, byte, or bit data.

Syntax

off address_expression
address_expression

An expression with the "off" addressing specifier is coded as the operand.  A backslash "" can
be coded instead of "off", but the meaning is slightly different when accessing bit data in the SBA
area (→sbaoff Badr).

Word format

L A, off VAR
L A, VAR

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (→word boundary).

Byte format

LB A, off VAR
LB A, VAR

Bit format

SB off VAR.3
SB VAR.3

RAM
xx00H

xxxxH

xxFFH

Current page

RAM
xx00H

xxxxH

xxFFH

Current page

RAM
xx00H

xxxxH

xxFFH

Current page



Chapter 2  Addressing Mode
RAM Addressing

Chapter 2 nX-8/500S Instruction Manual10

dir Dadr Direct Addressing

Function

This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-0FFFFH = 64K bytes) with two bytes in an instruction code.  The specified address
can be accessed as word, byte, or bit data.

Syntax

dir address_expression
address_expression

An expression with the "dir" addressing specifier is coded as the operand.  The "dir" can be
omitted, but the assembler may select SFR page addressing or fixed page addressing when the
specified address is in the SFR page or fixed page.

Word format

L A, dir VAR
L A, VAR

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (→word boundary).

Byte format

LB A, dir VAR
LB A, VAR

Bit format

SB dir VAR.3
SB VAR.3

RAM
0000H

xxxxH

FFFFH

64K bytes

RAM
0000H

xxxxH

FFFFH

64K bytes

RAM
0000H

xxxxH

FFFFH

64K bytes



Chapter 2  Addressing Mode
RAM Addressing

Nx-8/500S Instruction Manual Chapter 2  11

[DP] / [X1] Pointing Register Indirect Addressing

Function

This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-0FFFFH = 64K bytes) with the contents of a pointing register.  The specified
address can be accessed as word, byte, or bit data.

Syntax

[DP] DP indirect addressing
[X1] X1 indirect addressing

Only [DP] can be used with nX-8/100-400.

Word format

L A, [DP]
L A, [X1]

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (→word boundary).

Byte format

LB A, [DP]
LB A, [X1]

Bit format

SB [DP].3
RB [X1] .3

RAM
0000H

xxxxH

FFFFH

64K bytes
DP or X1

RAM
0000H

xxxxH

FFFFH

64K bytes
DP or X1

RAM
0000H

xxxxH

FFFFH

64K bytes
DP or X1



Chapter 2  Addressing Mode
RAM Addressing

Chapter 2 nX-8/500S Instruction Manual12

[DP+] DP Indirect Addressing With Post-Increment

Function

This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-0FFFFH = 64K bytes) with the contents of a pointing register.  The specified
address can be accessed as word, byte, or bit data.
After the address has been accessed, the contents of the pointing register are incremented.  For
word-type instructions, the contents are increased by 2.  For byte-type and bit-type instructions,
the contents are increased by 1.

Syntax

[DP+] DP indirect addressing with post-increment

This addressing mode does not exist for nX-8/100-400.

Word format

L A, [DP+]

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (→word boundary).

Byte format

LB A, [DP+]

Bit format

SB [DP+].3

64K bytes

64K bytes

64K bytes

DP

RAM
0000H

xxxxH

FFFFH

DP

RAM
0000H

xxxxH

FFFFH

DP

↑ increment by
1 after access

↑ increment by
1 after access

↑ increment by
1 after access

RAM
0000H

xxxxH

FFFFH



Chapter 2  Addressing Mode
RAM Addressing

Nx-8/500S Instruction Manual Chapter 2  13

[DP-] DP Indirect Addressing With Post-Decrement

Function

This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-0FFFH = 64K bytes) with the contents of a pointing register.  The specified address
can be accessed as word, byte, or bit data.

After the address has been accessed, the contents of the pointing register are decremented.  For
word-type instructions, the contents are reduced by 2.  For byte-type and bit-type instructions,
the contents are reduced by 1.

Syntax

[DP-] DP indirect addressing with post-decrement

This addressing mode does not exist for nX-8/100-400.

Word format

L A, [DP-]

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (→word boundary).

Byte format

LB A, [DP-]

Bit format

SB [DP-].3

DP

RAM
0000H

xxxxH

FFFFH

DP

RAM
0000H

xxxxH

FFFFH

DP

↑ decrement by
1 after access

↑ decrement by
1 after access

↑ decrement by
2 after access

RAM
0000H

xxxxH

FFFFH

64K bytes

64K bytes

64K bytes



Chapter 2  Addressing Mode
RAM Addressing

Chapter 2 nX-8/500S Instruction Manual14

n7 [DP] / n7 [USP] DP/USP Indirect Addressing With 7-Bit Displacement

Function

This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-0FFFFH = 64K bytes) with the contents of a pointing register as the base and a 7-bit
signed displacement (bits 6-0, with bit 6 the sign bit) in the instruction code.  Addresses within a
range -64 to +63 of the contents of a pointing register can be accessed.  The specified address
can be accessed as word, byte, or bit data.

Syntax

constant_expression[DP] DP indirect addressing with 7-bit displacement
constant_expression[USP] USP indirect addressing with 7-bit displacement

The constant_expression is a value in the range -64 to +63.
DP and USP can be used as the pointing register.
Only [DP] can be used with nX-8/100-400.  For these, addresses within a range -128 to +127 of the contents of the pointing

register can be accessed.

Word format

L A, 12[DP]
L A, 12[X1]

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (→word boundary).

Byte format

LB A, 12[DP]
LB A, 12[X1]

Bit format

SB 12[DP].3
RB 12[X1].3

DP or X1

RAM
0000H

xxxxH

FFFFH

RAM
0000H

xxxxH

FFFFH

RAM
0000H

xxxxH

FFFFH

64K bytes

64K bytes

64K bytes

DP or X1

DP or X1



Chapter 2  Addressing Mode
RAM Addressing

Nx-8/500S Instruction Manual Chapter 2  15

D16 [X1]  /  D16 [X2] X1/X2 Indirect Addressing With 16-Bit Base

Function

This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-0FFFFH = 64K bytes) with two bytes in the instruction code (D16) as a base added
to the contents of a pointing register (X1 or X2).  The addition to generate the address is word
(16-bit) addition with overflows ignored.  Accordingly, the address generated will be 0 to
0FFFFH.  The specified address can be accessed as word, byte, or bit data.

Syntax

address_expression[X1] X1 indirect addressing with 16-bit base
address_expression[X2] X2 indirect addressing with 16-bit base

The address_expression is a value in the range 0 to 0FFFFH.  However, the assembler permits a
range -8000H to +0FFFFH.  D16 could be thought of not as a base address, but as a
displacement.

Word format

L A, 1234H[X1]
ST A, 1234H[X2]

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (→word boundary).

Byte format

LB A, 1234H[X1]
STB A, 1234H[X2]

Bit format

SB 1234H[X1].3
RB 1234H[X2].3

X1 or X2

RAM
0000H

xxxxH

FFFFH

RAM
0000H

xxxxH

FFFFH

RAM
0000H

xxxxH

FFFFH

64K bytes

64K bytes

64K bytes

X1 or X2

X1 or X2



Chapter 2  Addressing Mode
RAM Addressing

Chapter 2 nX-8/500S Instruction Manual16

[X1+A]  /  [X1+R0] X1 Indirect Addressing With 8-Bit Register Displacement

Function

This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-0FFFFH = 64K bytes) with the contents of a pointing register as the base added to
the contents of the low byte of the accumulator (AL) or local register 0 (R0).  The addition to
generate the address is word (16-bit) addition, with the 8-bit displacement from the register
extended without sign.  Overflow from this addition is ignored, so the generated value will be 0
to 0FFFFH.  The specified address can be accessed as word, byte, or bit data.

Syntax

[X1+A] X1 indirect addressing with 8-bit register displacement (AL)
[X1+R0] X1 indirect addressing with 8-bit register displacement (R0)

Word format

MOV A, [X1+A]
MOV A, [X1+R0]

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (→word boundary).

Byte format

MOVB A, [X1+A]
MOVB A, [X1+R0]

Bit format

SB [X1+A].3
RB [X1+R0].3

X1

RAM
0000H

xxxxH

FFFFH

RAM
0000H

xxxxH

FFFFH

RAM
0000H

xxxxH

FFFFH

64K bytes

64K bytes

64K bytes

X1

X1

AL or R0

AL or R0

AL or R0



Chapter 2  Addressing Mode
RAM Addressing

Nx-8/500S Instruction Manual Chapter 2  17

sbafix Badr Fixed page SBA area addressing

Function

This addressing mode specifies a bit address in the 512-bit SBA area (2C0H.0-2FFH.7) in the
fixed page.  The specified address is accessed as bit data.

Syntax

sbafix address_expression
address_expression

Four instructions can be coded with this addressing mode:  SB, RB, JBS, and JBR.

Bit format

SB sbafix 2C0H.0
RB sbafix 1600H
JBS sbafix FIXBITVAR,  LABEL
JBR sbafix 2EFH.7, LABEL

SB 2C0H.0
RB 1600H
JBS FIXBITVAR,  LABEL
JBR 2EFH.3, LABEL RAM

02C0H

 02xxH

02FFH

SBA area in the
fixed page



Chapter 2  Addressing Mode
RAM Addressing

Chapter 2 nX-8/500S Instruction Manual18

sbaoff Badr Current page SBA area addressing

Function

This addressing mode specifies a bit address in the 512-bit SBA area (xxC0H.0-xxFFH.7) in the
current page.  The specified address is accessed as bit data.

Syntax

sbaoff address_expression
address_expression

Four instructions can be coded with this addressing mode:  SB, RB, JBS, and JBR.

Bit format

SB sbaoff 4C0H.0
RB sbaoff 2E80H
JBS sbaoff VAR, LABEL
JBR sbaoff 0FFFFH.3, LABEL

SB 2C0H.0
RB 2E80H
JBS VAR, LABEL
JBR 0FFFFH.3, LABEL RAM

xxC0H

 xxxxH

xxFFH

SBA area in the
current page



Chapter 2  Addressing Mode
ROM Addressing

Nx-8/500S Instruction Manual Chapter 2  19

2-3. ROM Addressing

2-3-1. Immediate Addressing

These addressing modes access immediate data including in the instruction code.

� Word/byte immediate addressing #N16,#N8.. 20

2-3-2. Table Data Addressing

These addressing modes access the 64K bytes in the current table segment area in ROM space.

(1) Direct addressing

� Direct table addressing Tadr .. 21

(2) Indirect addressing

� RAM address indirect table addressing [**] ..22
� RAM address indirect addressing with 16-bit base T16[**]  .23

3-3-3. Program Code Addressing

These addressing modes access the current program code in ROM space.  They are used for
operands in branch instructions.

(1) Direct addressing

� Near code addressing Cadr.. 24
� Far code addressing Fadr .. 25

(2) Relative addressing

� Relative code addressing radr .. 26

(3) Special code addressing for particular instructions

� ACAL code addressing Cadr11.. 27
� VCAL code addressing Vadr .. 28

(4) Indirect addressing

� RAM address indirect code addressing [**] ..29



Chapter 2  Addressing Mode
ROM Addressing

Chapter 2 nX-8/500S Instruction Manual20

#N16  /  #N8 Word/Byte Immediate Addressing

Function

For words, this addressing mode accesses two bytes (N16) in the instruction code.  For bytes, it
accesses one byte (N8) in the instruction code.

Syntax

#expression

For words, the expression has a value in the range 0-0FFFFH.  For bytes, it has a value in the
range 0-0FFH.  However, the assembler permits values in the ranges covered by both signed and
unsigned expressions.  For words, this range is -8000H to +0FFFFH.  For bytes, it is -80H to
+0FFH.

Word format

L A, #1234H
MOV X1, #WORD_ARRAY_BASE

Byte format

LB A, #12H
MOVB X1, #BYTE_ARRAY_BASE



Chapter 2  Addressing Mode
ROM Addressing

Nx-8/500S Instruction Manual Chapter 2  21

Tadr Direct Table Addressing

Function

This addressing mode specifies an address in the current table segment (0-0FFFFH: 64K bytes)
with two bytes in the instruction code.  The specified address can be accessed as word or byte
bit data.

Four instructions can use this addressing mode:  LC, LCB, CMPC, and CMPCB.

Syntax

address_expression

The expression indicates and table address and is coded as the operand.

Word format

LC A, VAR
CMPC A, VAR

Byte format

LCB A, VAR
CMPCB A, VAR



Chapter 2  Addressing Mode
ROM Addressing

Chapter 2 nX-8/500S Instruction Manual22

[**] RAM Address Indirect Table Addressing

Function

This indirect addressing mode uses word data specified by RAM addressing as a pointer to the
current table segment.  Table memory can thus be accessed by placing a pointer to table memory
in a register or in data memory.

Four instructions can use this addressing mode:  LC, LCB, CMPC, and CMPCB.

Syntax

[RAM_address_specification]

A word RAM address specification is entered in the brackets.

Word format

LC A, [A]
CMPC A, [1234[X1]]

Byte format

LCB A, [ER0]
CMPCB A, [VAR]



Chapter 2  Addressing Mode
ROM Addressing

Nx-8/500S Instruction Manual Chapter 2  23

T16[**] RAM Address Indirect Addressing With 16-Bit Base

Function

This addressing mode specifies an address in the current table segment (0-0FFFFH: 64K bytes)
with a two-byte base (T16) in the instruction code added to the word data specified by RAM
addressing.  The addition to generate the address is word (16-bit) addition with overflows
ignored.  Accordingly, the address generated will be 0 to 0FFFFH.  The specified address can
be accessed as word or byte data.

Four instructions can use this addressing mode:  LC, LCB, CMPC, and CMPCB.

Syntax

address_expression[RAM_address_specification]

A word RAM address specification is entered in the brackets.

Word format

LC A, 2000H[A]
CMPC A, 2000H[1234[X1]]

Byte format

LCB A, 2000H[ER0]
CMPCB A, 2000H[VAR]



Chapter 2  Addressing Mode
ROM Addressing

Chapter 2 nX-8/500S Instruction Manual24

Cadr Near Code Addressing

Function

This addressing mode specifies an address in the current code segment (0-0FFFFH: 64K bytes)
with two bytes in the instruction code.

Two instructions can use this addressing mode:  J and CAL.

Syntax

address_expression

The expression indicates a code address as the operand.

Example use

J 3000H
CAL LABEL



Chapter 2  Addressing Mode
ROM Addressing

Nx-8/500S Instruction Manual Chapter 2  25

Fadr Far Code Addressing

Function

This addressing mode specifies an address anywhere in program memory (0:0-0FFH:0FFFFH:
16M bytes) with three bytes in the instruction code.

Two instructions can use this addressing mode:  FJ and FCAL.

Syntax

address_expression

The expression indicates a code address as the operand

Example use

FJ 20H:3000H
FCAL FARLABEL



Chapter 2  Addressing Mode
ROM Addressing

Chapter 2 nX-8/500S Instruction Manual26

radr Relative Code Addressing

Function

This addressing mode specifies an address in the current code segment (0-0FFFFH: 64K bytes)
with the current program counter (PC) as a base added to an 8-bit or 7-bit sign-extended value in
the instruction code.  The addition to generate the address is word (16-bit) addition with
overflows ignored.  Accordingly, the address generated will be 0 to 0FFFFH.

Instructions that can use this addressing mode are the SJ instruction and conditional branch
instructions.

Syntax

address_expression

The expression indicates a code address as the operand.

Example use

SJ LABEL
DJNZ R0, LABEL
JC LT, LABEL



Chapter 2  Addressing Mode
ROM Addressing

Nx-8/500S Instruction Manual Chapter 2  27

Cadr11 ACAL Code Addressing

Function

This addressing mode specifies an address in the ACAL area current code segment (1000H-
17FFH: 2K bytes) with 11 bits in the instruction code.

Only the ACAL instruction can use this addressing mode.

Syntax

address_expression

The expression indicates a code address as the operand.

Example use

ACAL 1000H
ACAL ACALLABEL



Chapter 2  Addressing Mode
ROM Addressing

Chapter 2 nX-8/500S Instruction Manual28

Vadr VCAL Code Addressing

Function

This addressing mode specifies a vector (word data) for the VCAL instruction with four bits in
the instruction code.

Only the VCAL instruction can use this addressing mode.

Syntax

address_expression

The expression indicates a code address as the operand.

Example use

VCAL 4AH
VCAL 0:4AH
VCAL VECTOR



Chapter 2  Addressing Mode
ROM Addressing

Nx-8/500S Instruction Manual Chapter 2  29

[**] RAM Address Indirect Code Addressing

Function

This indirect addressing mode uses word data specified by RAM addressing as a pointer to the
current code segment.  Indirect jumps and calls can be executed by placing a pointer to code
memory in a register or in data memory.

Two instructions can use this addressing mode:  J and CAL.

Syntax

[RAM_address_specification]

A word RAM address specification is entered in the brackets.

Example use

J [A]
CAL [1234[X1]]



Chapter 2  Addressing Mode
ROM Addressing

Chapter 2 nX-8/500S Instruction Manual30

2-4.  ROM Window Addressing

ROM window addressing accessed table data in ROM space using RAM addressing.  It reads
data in a table segment through a window in a data segment opened by the program.

Addressing to data memory in the ROM window area is permitted, but if an instruction that writes
to the ROM window is executed, then the results are not guaranteed.





Chapter 3.  Instruction Details
                                                                                  

This chapter explains the functions of each nX-8/500S core instruction in detail.



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  1

nX-8/500S Instruction Set Listed By Function

Data Move
Mnemonic Operand CZSVHD D Function
L A,obj .  z .  .  . 1  . Word move (Word load) A←obj, DD←1
ST A,obj . . . . . .  1 Word move (Word store) obj ← A
MOV obj1, obj2 . . . . . .  . Word move obj1 ← obj2

A . 1. . . 1  . Word clear A←0, DD←1CLR
obj . . . . . .  . Word clear obj←0
A . . . . . .  1 Word fill A←0FFFFHFILL
obj . . . . . .  . Word fill obj←0FFFFH

XCHG A,obj . . . . . .  1 Word exchange A ↔ obj
SWAP . . . . . .  . High/low byte swap AH ↔ AL
LB A,obj . z. . . 0  . Byte move (Byte load) AL←obj, DD←0
STB A,obj . . . . . .  0 Byte move (Byte store) obj ← AL
MOVB obj1, obj2 . . . . . .  . Byte move obj1 ←obj2

A . 1. . . 0  . Byte clear AL←0, DD←0CLRB
obj . . . . . .  . Byte clear obj←0
A . . . . . .  0 Byte fill AL←0FFHFILLB
obj . . . . . .  . Byte fill obj←0FFH

XCHGB A,obj . . . . . .  0 Byte exchange AL ↔ obj

Stack Manipulation
Mnemonic Operand CZSVHD D Function
PUSHS register_list . . . . . .  . Push on system stack System stack←Register group
POPS register_list CZSVHD . Pop off system stack Register group←System stack



Chapter 3  Instruction Details
Instruction Set

2  Chapter 3 nX-8/500S Instruction Manual

Shift/Rotate
Mnemonic Operand CZSVHD D Function

A,width
A

C. . . . .  1 Word left shift (with carry)
width=1 to 4

SLL

obj,width
obj

C. . . . .  . Word left shift (with carry)
width=1 to 4

A,width
A

C. . . . .  1 Word right shift (with carry)
width=1 to 4

SRL

obj,width
obj

C. . . . .  . Word right shift (with carry)
width=1 to 4

A,width
A

C. . . . .  1 Word arithmetic right shift (with carry)
width=1 to 4

SRA

obj,width
obj

C. . . . .  . Word arithmetic right shift (with carry)
width=1 to 4

A,width
A

C. . . . .  1 Word left rotate (with carry)
width=1 to 4

ROL

obj,width
obj

C. . . . .  . Word left rotate (with carry)
width=1 to 4

ROR A,width
A

C. . . . .  1 Word right rotate (with carry)
width=1 to 4

obj,width
obj

C. . . . .  . Word right rotate (with carry)
width=1 to 4

SLLB A,width
A

C. . . . .  0 Byte left shift (with carry)
width=1 to 4

obj,width
obj

C. . . . .  . Byte left shift (with carry)
width=1 to 4

SRLB A,width
A

C. . . . .  0 Byte right shift (with carry)
width=1 to 4

obj,width
obj

C. . . . .  . Byte right shift (with carry)
width=1 to 4

SRAB A,width
A

C. . . . .  0 Byte arithmetic right shift (with carry)
width=1 to 4

obj,width
obj

C. . . . .  . Byte arithmetic right shift (with carry)
width=1 to 4

ROLB A,width
A

C. . . . .  0 Byte left rotate (with carry)
width=1 to 4

obj,width
obj

C. . . . .  . Byte left rotate (with carry)
width=1 to 4

RORB A,width
A

C. . . . .  0 Byte right rotate (with carry)
width=1 to 4

obj,width
obj

C. . . . .  . Byte right rotate (with carry)
width=1 to 4

A7 0C

obj7 0C

A7 0C

obj7 0C

obj15 0C
0

A15 0 C
0

C

A15 0C
0

obj15 C
0

15 0 C

A7 0C
0

obj7 0C
0

A
0

CC7 0

obj
0

CC7 0

A CC7 0

obj CC7 0

A C15 0

obj 015 C

A15 0C

obj15 0C

A15 0C

obj15 0C



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  3

Increment/Decrement
Mnemonic Operand CZSVHD D Function

A . ZSVH. . .1 Word increment A←A+1INC
obj . ZSVH. . .. Word increment obj←obj+1
A . ZSVH. . .1 Word decrement A←A-1DEC
obj . ZSVH. . .. Word decrement obj←obj-1
A . ZSVH. . .0 Byte increment AL←AL+1INCB
obj . ZSVH. . .. Byte increment obj←obj+1
A . ZSVH. . .0 Byte decrement AL←AL-1DECB
obj . ZSVH. . .. Byte decrement obj←obj-1

Arithmetic Calculation
Mnemonic Operand CZSVHD D Function
MUL obj . Z. . . .  . Word multiplication <A,ER0> ← A × obj
SQR A . Z. . . .  1 Word square <A,ER0> ← A × A
DIV obj CZ. . . .  . Word division <A,ER0> ← <A,ER0> ÷ obj,

ER1 ← <A,ER0> mod obj
DIVQ obj CZ. V. .   . Word quick division A ← <A,ER0> ÷ obj,

ER1 ← <A,ER0> mod obj

A,obj CZSVH   1 Word addition A←A+objADD
obj1, obj2 CZSVH   . Word addition obj1←obj1+obj2
A,obj CZSVH   1 Word addition with carry A←A+obj+CADC
obj1, obj2 CZSVH   . Word addition with carry obj1←obj1+obj2+C
A,obj CZSVH   1 Word subtraction A←A-objSUB
obj1, obj2 CZSVH   . Word subtraction obj1←obj1-obj2
A,obj CZSVH   1 Word subtraction with carry A ← A-obj-CSBC
obj1, obj2 CZSVH   . Word subtraction with carry obj1 ← obj1-obj2-C
A,obj CZSVH   1 Word comparison A-objCMP
obj1, obj2 CZSVH   . Word comparison obj1-obj2

NEG A CZSVH   1 Word negation A ← -A
MULB obj . Z. . . .  . Byte multiplication A ← AL × obj
SQRB A . Z. . . .  0 Byte square A ← AL × AL
DIVB obj CZ. . . .  . Byte division A ← A ÷ obj,

R1 ←A mod obj
A,obj CZSVH   0 Byte addition AL←AL+objADDB
obj1, obj2 CZSVH   . Byte addition obj1←obj1+obj2
A,obj CZSVH   0 Byte addition with carry AL←AL+obj+CADCB
obj1, obj2 CZSVH   . Byte addition with carry obj1←obj1+obj2+C
A,obj CZSVH   0 Byte subtraction AL ← AL-objSUBB
obj1, obj2 CZSVH   . Byte subtraction obj1←obj1-obj2
A,obj CZSVH   0 Byte subtraction with carry AL ← AL-obj-CSBCB
obj1, obj2 CZSVH   . Byte subtraction with carry obj1 ← obj1-obj2-C
A,obj CZSVH   0 Byte comparison AL-objCMPB
obj1, obj2 CZSVH   . Byte comparison obj1-obj2

NEGB A CZSVH   0 Byte negation AL ← -AL



Chapter 3  Instruction Details
Instruction Set

4  Chapter 3 nX-8/500S Instruction Manual

Logical Calculation
Mnemonic Operand CZSVHD D Function

A,obj . ZS. . .   1 Word logical AND A← A ∩ objAND
obj1,obj2 . ZS. . .   . Word logical AND obj1 ← obj1 ∩ obj2
A,obj . ZS. . .   1 Word logical OR A ← A ∪ objOR
obj1,obj2 . ZS. . .   . Word logical OR obj1 ← obj1 ∪ obj2
A,obj . ZS. . .   1 Word logical exclusive OR A ← A   objXOR
obj1,obj2 . ZS. . .   . Word logical exclusive OR obj1 ← obj1   obj2
A,obj . ZS. . .   0 Byte logical AND AL←AL∩objANDB
obj1,obj2 . ZS. . .   . Byte logical AND obj1←obj1∩obj2
A,obj . ZS. . .   0 Byte logical OR AL ← AL ∪ objORB
obj1,obj2 . ZS. . .   . Byte logical OR obj1 ← obj1 ∪ obj2
A,obj . ZS. . .   0 Byte logical exclusive OR AL ← AL   objXORB
obj1,obj2 . ZS. . .   . Byte logical exclusive OR obj1 ← obj1   obj2

ROM table Reference
Mnemonic Operand CZSVHD D Function

A,[obj] .  Z.  .  .    . Word ROM data move (indirect) A ← TSR:(obj)
A,T16[obj] .  Z.  .  .    . Word ROM data move (indirect with base) A ← TSR:(T16 + obj)

LC

A,Tadr . Z.  .  .    . Word ROM data move (direct) A ← TSR:Tadr
A,[obj] CZSVH  . Word ROM comparison (indirect) A - TSR:(obj)
A,T16[obj] CZSVH  . Word ROM comparison (indirect with base) A - TSR:(T16 + obj)

CMPC

A,Tadr CZSVH  . Word ROM comparison (direct) AL - TSR:Tadr
A,[obj] .  Z.  .  .    . Byte ROM data move (indirect) AL ← TSR:(obj)
A,T16[obj] .  Z.  .  .    . Byte ROM data move (indirect with base) AL ← TSR:(T16 + obj)

LCB

A,Tadr . Z.  .  .    . Byte ROM data move (direct) AL ← TSR:Tadr
A,[obj] CZSVH  . Byte ROM data move (indirect) AL - TSR:(obj)
A, [obj] CZSVH  . Byte ROM data move (indirect with base) AL - TSR:(obj)

CMPCB

A,T16[obj] CZSVH  . Byte ROM data move (direct) AL - TSR:(T16 + obj)

Bit Manipulation
Mnemonic Operand CZSVHD D Function
SBR obj . Z.  .  .    . Set bit  (register indirect bit specification) obj.(AL) ← 1
RBR obj . Z.  .  .    . Reset bit  (register indirect bit specification) obj.(AL) ← 0
TBR obj . Z.  .  .    . Test bit  (register indirect bit specification) if obj.(AL)=0 then Z←1 else

Z←0
C,obj C.  .  .  .    . Bit move (register indirect bit specification) C ← obj.(AL)MBR
obj,C . . . . . .  . Bit move (register indirect bit specification) obj.(AL) ← C

SB obj.bit .  Z.  .  .    . Set bit (bit position direct specification) if obj.bit = 1 then Z←1 else Z←0,
obj.bit←1

RB obj.bit .  Z.  .  .    . Reset bit (bit position direct specification) if obj.bit = 0 then Z←1 else Z←0,
obj.bit←0

C,obj.bit C.  .  .  .    . Bit move C ← obj.bitMB
obj.bit,C . . . . . .  . Bit move obj.bit ← C

BAND C,obj.bit C.  .  .  .    . Bit logical AND C←C ∩ obj.bit
BOR C,obj.bit C.  .  .  .    . Bit logical OR C←C ∪ obj.bit
BXOR C,obj.bit C.  .  .  .    . Bit logical exclusive OR C←C   obj.bit
BANDN C,obj.bit C.  .  .  .    . Bit logical AND with bit complement C←C ∩ obj.bit
BORN C,obj.bit C.  .  .  .    . Bit logical OR with bit complement C←C ∪ obj.bit

∪
∪

∪
∪

∪



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  5

Jump/Call
Mnemonic Operand CZSVHD D Function
JBS obj.bit,radr . . . . . .  . Bit test & jump if obj.bit=1 then PC←radr
JBR obj.bit,radr . . . . . .  . Bit test & jump if obj.bit=0 then PC←radr
JBSR obj.bit,radr . . . . . .  . Bit test & jump (with bit reset) if obj.bit=1

then  obj.bit←0, PC←radr
JBRS obj.bit,radr . . . . . .  . Bit test & jump (with bit set) if obj.bit=0

then  obj.bit←1, PC←radr
A,radr . . . . . .  1 Word test & jump (jump if zero) if A=0 then PC←radrTJZ
obj,radr . . . . . .  . Word test & jump (jump if zero) if obj=0 then PC←radr

A,radr . . . . . .  1 Word test & jump (jump if non-zero) if A ≠ 0 then PC←radrTJNZ
obj,radr . . . . . .  . Word test & jump (jump if non-zero) if obj ≠ 0 then PC←radr

A,radr . . . . . .  0 Byte test & jump (jump if zero) if AL=0 then PC←radrTJZB
obj,radr . . . . . .  . Byte test & jump (jump if non-zero) if obj=0 then PC←radr

A,radr . . . . . .  0 Byte test & jump (jump if non-zero) if AL ≠ 0 then PC←radrTJNZB
obj,radr . . . . . .  . Byte test & jump (jump if zero) if obj ≠ 0 then PC←radr

Jcond radr . . . . . .  . Conditional jump if cond is true then PC←radr
DJNZ obj,radr . . . . . .  . Loop obj←obj-1,if obj ≠ 0 then PC←radr
JRNZ DP,radr . . . . . .  . Loop DPL←DPL-1,if DPL ≠ 0 then PC←radr
SJ radr . . . . . .  . Short jump PC←radr

Cadr . . . . . .  . 64K-byte space (within current physical code segment) direct jumpJ
[obj] . . . . . .  . 64K-byte space (within current physical code segment) indirect jump

Cadr . . . . . .  . 64K-byte space (within current physical code segment) direct callCAL
[obj] . . . . . .  . 64K-byte space (within current physical code segment) indirect call

VCAL Vadr . . . . . .  . Vector call
ACAL Cadr11 . . . . . .  . Special area call
SCAL Cadr . . . . . .  . 64K-byte space (within current physical code segment) direct call
RT . . . . . .  . Return from subroutine
RTI CZSVHD  . Return from interrupt
FCAL Fadr . . . . . .  . 24-bit space (16M bytes: entire program area) direct call
FJ Fadr . . . . . .  . 24-bit space (16M bytes: entire program area) direct jump
FRT . . . . . .  . Return from far subroutine

Other Instructions
Mnemonic Operand CZSVHD D Function
SC 1 . . . . .  . Set carry C ← 1
RC 0 . . . . .  . Reset carry C ← 0
CPL C C . . . . .  . Complement carry C ← C
SDD . . . . . 1  . Set DD DD ← 1
RDD . . . . . 0  . Reset DD DD ← 0
EI . .  .  .  .  .   . Enable interrupts MIE ← 1
DI . .  .  .  .  .   . Disable interrupts MIE ← 0
EXTND . .  S.  .1  . Extend byte to word with sign A15-7 ← A7, DD ← 1
NOP . .  .  .  .  .   . No operation NO  OPERATION
BRK 000000  . Break (system reset) RESET, PC ←(Vector-table 0002H)
MAC . .  .  .  .  .   . Multiply-accumulate Multiply-accumulate start bit ← 1



Chapter 3  Instruction Details
Instruction Set

6  Chapter 3 nX-8/500S Instruction Manual

Symbols Used In Operand Expressions Of Instruction

Operand Expressions
Symbol Syntax Meaning Permitted range of value

Registers

ERn ER0,
ER1,
ER2,
ER3

Word local register

PRn X1,
X2,
DP,
USP

Pointing register
(PR0,PR1,PR2,PR3 correspond
to X1,X2,DP,USP respectively)

Rn R0,R1,
R2,R3,
R4,R5,
R6,R7

Byte local register

Expressions representing data addresses
(represents table addresses (TSR base) within the ROM window)

D16 expression Index indirect base data address DSR:0H to DSR:0FFFFH
off expressionoff   expression Current page data address DSR:0H to DSR:0FFFFH

sfr expressionsfr expression SFR page data address DSR:0H to DSR:0FFH

fix expressionfix expression Fixed page data address DSR:200H to DSR:2FFH

dir expressiondir expression Direct data address DSR:0 to DSR:0FFFFH

sbafix expressionsbafix expression Fixed page SBA bit address DSR:2C0H.0 to
DSR:2FFH.7

sbaoff expressionsbaoff   expression Current page SBA address DSR:xxC0H.0 to
DSR:xxFFH.7

, off, sfr, fix, dir, sbafix, and sbaoff are address specifiers.
Expressions representing code addresses

Cadr expression Code address within code segment CSR:0H to CSR:0FFFFH
Cadr11 expression ACAL code address CSR:1000H to

CSR:17FFH
Vadr expression VCAL vector address 0:4AH to 0:69H
Fadr expression FAR code address 0:0H to 0FFH:0FFFFH
radr expression Relative code address CSR:0H to CSR:0FFFFH

Expressions representing ROM table addresses
Tadr expression Address within table segment TSR:0H to TSR:0FFFFH

Expressions representing constants
N16 expression Word immediate value -8000H to +0FFFFH
N8 expression Byte immediate value -80H to +0FFH
n7 expression Signed 6-bit displacement -40H to +3FH

Operands specifying prefix codes
∗∗ Word prefix code group
∗ Byte prefix code group

Other
bit expression Bit position 0 to 7

width expression Shift width 1 to 4

*All character expressions in instruction tables other than those above are used as is.



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  7

Symbols Used In Instruction Code Expressions Of Instruction

Code Expressions
Symbol Meaning Field

Instruction codes that specify registers 7 6 5 4 3 2 1 0
xx +n ERn (n:0-3)

PRn (n:0-3)
Rn (n:0-7)

Instruction codes that indicate data addresses 7 6 5 4 3 2 1 0
D16L Low byte of D16 expression value
D16H High byte of D16 expression value
off8 Low byte of expression value
sfr8 Low byte of expression value
fix8 Low byte of expression value
dirL Low byte of dir
dirH High byte of dir

Instruction codes that indicate code addresses 7 6 5 4 3 2 1 0
CadrL Low byte of Cadr expression value
CadrH High byte of Cadr expression value

Cadr11L Low byte of Cadr11 expression value
Cadr11H 3 bits (bit 10 to bit 8) of Cadr11 expression value (0-7)

Vno4 Vector number (0-15)
FadrL Low byte of expression value
FadrM High byte of expression value
FadrH Physical code segment of expression
rdiff8 Difference between radr and the next PC (-128 to +127)
rdiff7 Difference between radr and the PC (-128 to -1)

Instruction codes that indicate ROM table addresses 7 6 5 4 3 2 1 0
TadrL Low byte of Tadr expression value
TadrH High byte of Tadr expression value
T16L Low byte of T16 expression value
T16H High byte of T16 expression value

Instruction codes that indicate constants
N16L Word immediate value low byte
N16H Word immediate value high byte

N8 Byte immediate value
n7 Signed 6-bit displacement (-40H to 3FH)

Other 7 6 5 4 3 2 1 0
bit Bit position (0-7)

width Shift width 1-4 corresponding to code 0-3
Prefix codes 7 6 5 4 3 2 1 0

<word> Word prefix codes (1-3 bytes)
<byte> Byte prefix codes (1-3 bytes)

<dumyW> Dummy word prefix (X1 prefix code: 60H)
<dumyB> Dummy byte prefix (PSWL prefix code: 8AH)

* All values other than those above are expressed as hexadecimal constants.



Chapter 3  Instruction Details
Instruction Set

8  Chapter 3 nX-8/500S Instruction Manual

The following pages contain a reference of instruction details. Instructions are presented in alphabetical

order, with the following as a general example. Basically one instruction is explained on one page.

General format of
instruction

Shows general format of mnemonic
and operands with symbols.

Metaformat of
instruction operation

Shows instruction operation using
easy-to-understand symbols.

Datailed description of
instruction functions

Explains operation details, operand
coding, restrictions,etc.

Simple meaning
of instruction

Instruction code table
Shows instruction code and
execution cycles with internal
memory for the addressing
groups permitted as operands.

Instruction code prefix table
Each item in the left column can be coded
as operand in the above instruction code
table (* or **). The combined cycle count
is found by summing both cycle count. A
table entry isvalid when combined with the
same instruction.

Flag changes
Classifies changes in
flag states from instuction
execution;
blank No change
0 Reset to 0
1 Set to 1
* Changes according

to result

Necessary
conditions for
execution

Shows the necessarystate
of the data descriptor
for executing the
instruction;
blank State of DD is

irrelative
0 Reset to 0
1 Set to 1



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  A-1

ACAL  Cadr11  Special Area Call

Function
(SSP)←PC+2
SSP←SSP-2
PC←Cadr11
However, CSR:1000H ≤ Cadr11 ≤ CSR:17FFH

Description
• This instruction calls the ACAL area in the current physical segment.  The ACAL area is the

2K-bytes starting from address 1000H in code space.
• The state of the stack after execution of an ACAL instruction is identical to that after

execution of a CAL instruction.  Subroutines called with an ACAL instruction return using
an RT instruction.

• The first address of the subroutine is coded in Cadr11.
• ACAL area subroutines can be called more efficiently with the ACAL instruction than the

CAL instruction.

Flags
Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes

Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

ACAL Cadr11 44+Cadr11H Cadr11L 7



Chapter 3  Instruction Details
Instruction Set

A-2  Chapter 3 nX-8/500S Instruction Manual

ADC  A,obj Word Addition With Carry

Function

A←A+obj+C

Description
• This instruction performs word addition, adding the contents of obj (word length) and the

carry flag to the accumulator (A).
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ 1

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
ADC A #N16 BC F3 N16L N16H 8

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

ADC A ∗∗ <word> F5 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  A-3

ADC  obj1,obj2  Word Addition With Carry

Function

obj1←obj1+obj2+C

Description
• This instruction performs word addition, adding the contents of obj2 (word length) and the

carry flag to obj1 (word length).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <word> F0 fix8 +5
off <word> F1 off8 +5
sfr <word> F2 sfr8 +5
#N16 <word> F3 N16L N16H +6

ADC ∗∗

A <word> F4 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

A-4  Chapter 3 nX-8/500S Instruction Manual

ADCB  A,obj  Byte Addition With Carry

Function

AL←AL+obj+C

Description
• This instruction performs byte addition, adding the contents of obj (byte length) and the carry

flag to the accumulator low byte (AL).
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ 0

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
ADCB A #N8 BC F3 N8 6

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

ADCB A ∗ <byte> F5 +2

<byte>
Byte Prefix Instruction Code∗
1th 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  A-5

ADCB  obj1,obj2  Byte Addition With Carry

Function

obj1←obj1+obj2+C

Description
• This instruction performs byte addition, adding the contents of obj2 (byte length) and the carry

flag to obj1 (byte length).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <byte> F0 fix8 +5
off <byte> F1 off8 +5
sfr <byte> F2 sfr8 +5
#N8 <byte> F3 N8 +4

ADCB ∗

A <byte> F4 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

A-6  Chapter 3 nX-8/500S Instruction Manual

ADD  A,obj  Word Addition

Function
A←A+obj

Description
• This instruction performs word addition, adding the contents of obj (word length) to the

accumulator (A).
• Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ 1

Codes

Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

ERn 28+n 3
PRn 2C+n 3
#N16 AE N16L N16H 6
fix AC fix8 4

ADD A

off AD off8 4

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

ADD A ∗∗ <word> A5 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  A-7

ADD  obj1,obj2 Word Addition

Function
obj1←obj1+obj2

Description
• This instruction performs word addition, adding the contents of obj2 (word length) to obj1

(word length).

Flags
Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <word> A0 fix8 +5
off <word> A1 off8 +5
sfr <word> A2 sfr8 +5
#N16 <word> A3 N16L N16H +6

ADD ∗∗

A <word> A4 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

A-8  Chapter 3 nX-8/500S Instruction Manual

ADDB  A,obj  Byte Addition

Function
AL←AL+obj

Description
• This instruction performs byte addition, adding the contents of obj (byte length) to the

accumulator low byte (AL).
• Execution of this instruction is limited to when DD is 0 (byte).

Flags
Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ 0

Codes

Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

Rn 28+n 3
#N8 AE N8 4
fix AC fix8 4

ADDB A

off AD off8 4

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

ADDB A ∗ <byte> A5 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  A-9

ADDB  obj1,obj2  Byte Addition

Function

obj1←obj1+obj2

Description
• This instruction performs byte addition, adding the contents of obj2 (byte length) to obj1 (byte

length).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <byte> A0 fix8 +5
off <byte> A1 off8 +5
sfr <byte> A2 sfr8 +5
#N8 <byte> A3 N8 +4

ADDB ∗

A <byte> A4 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

A-10  Chapter 3 nX-8/500S Instruction Manual

AND  A,obj  Word Logical AND

Function

A←A ∩ obj

Description
• This instruction takes the word logical AND of the contents of obj (word length) and the

accumulator (A), and stores the result in the accumulator.
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ 1

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

off BD off8 4AND A
#N16 BE N16L N16H 6

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

AND A ∗∗ <word> B5 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  A-11

AND  obj1,obj2  Word Logical AND

Function

obj1←obj1 ∩ obj2

Description
• This instruction takes the word logical AND of the contents of obj1 (word length) and obj2

(word length), and stores the result in obj1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <word> B0 fix8 +5
off <word> B1 off8 +5
sfr <word> B2 sfr8 +5
#N16 <word> B3 N16L N16H +6

AND ∗∗

A <word> B4 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

A-12  Chapter 3 nX-8/500S Instruction Manual

ANDB  A,obj  Byte Logical AND

Function

AL←AL ∩ obj

Description
• This instruction takes the word logical AND of the contents of obj (byte length) and the

accumulator low byte (AL), and stores the result in the accumulator.
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ 0

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

off BD off8 4ANDB A
#N8 BE N8 4

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

ANDB A ∗ <byte> B5 +2

<byte>
Byte Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  A-13

ANDB  obj1,obj2  Byte Logical AND

Function

obj1←obj1 ∩ obj2

Description
• This instruction takes the word logical AND of the contents of obj1 (byte length) and obj2

(byte length), and stores the result in obj1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <byte> B0 fix8 +5
off <byte> B1 off8 +5
sfr <byte> B2 sfr8 +5
#N8 <byte> B3 N8 +4

ANDB ∗

A <byte> B4 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  B-1

BAND  C,obj.bit Bit Logical AND

Function

C←C ∩ obj.bit

Description
• This instruction takes the logical AND of the specified bit in obj (byte length) and the carry

(C), and stores the result in carry.  The bit has a value of 0-7.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

BAND C ∗.bit <byte> 40+bit +3

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

B-2  Chapter 3 nX-8/500S Instruction Manual

BANDN  C,obj.bit Bit Complement and Bit Logical

Function

C←C ∩ obj.bit

Description
• This instruction takes the logical AND of the complement of the specified bit in obj (byte

length) and the carry (C), and stores the result in carry.  The bit has a value of 0-7.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

BANDN C ∗.bit <byte> 48+bit +3

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  B-3

BOR  C,obj.bit  Bit Logical OR

Function

C←C ∪ obj.bit

Description
• This instruction takes the logical OR of the specified bit in obj (byte length) and the carry (C),

and stores the result in carry.  The bit has a value of 0-7.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

BOR C ∗.bit <byte> 50+bit +3

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

B-4  Chapter 3 nX-8/500S Instruction Manual

BORN  C,obj.bit  Bit Complement and Bit Logical OR

Function

C←C ∪ obj.bit

Description
• This instruction takes the logical OR of the complement of the specified bit in obj (byte

length) and the carry (C), and stores the result in carry.  The bit has a value of 0-7.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

BORN C ∗.bit <byte> 58+bit +3

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  B-5

BRK  Break (System Reset)

Function

SYSTEM RESET
PC←(Vector-table 0002H)

Description
• This instruction performs a software system reset.
• The CPU first performs system reset processing.  Next the word data at address 2 in the code

space reset vector table (the first address of the break processing routine) is moved to the PC.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
0 0 0 0 0 0

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

BRK FF 2



Chapter 3  Instruction Details
Instruction Set

B-6  Chapter 3 nX-8/500S Instruction Manual

BXOR  C,obj.bit Bit Logical Exclusive OR

Function

C←C   obj.bit

Description
• This instruction takes the logical exclusive OR of the specified bit in obj (byte length) and the

carry (C), and stores the result in carry.  The bit has a value of 0-7.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

BXOR C ∗.bit <byte> 60+bit +3

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

∪



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  C-1

CAL  Cadr 64K-Byte Space (Within Current Physical Code Segment) Direct Call

Function

(SSP) ←PC+3
SSP←SSP-2
PC←Cadr
However, CSR:0000H ≤ Cadr ≤ CSR:0FFFFH

Description
• This instruction calls any addresss in the 64K bytes in the current physical segment.
• The first address of the subroutine is coded in Cadr.  The subroutine must exist within the

current physical segment.
• The state of the stack after execution of a CAL instruction is shown below.  Subroutines

called with a CAL instruction return using an RT instruction.

 SSP after call 7          0 ↑ Low addresses
LSBSSP before call P C

MSB

↓ High addresses

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

CAL Cadr FE CadrL CadrH 9



Chapter 3  Instruction Details
Instruction Set

C-2  Chapter 3 nX-8/500S Instruction Manual

CAL  [obj] 64K-Byte Space (Within Current Physical Code Segment) Indirect Call

Function

(SSP) ←PC+n
SSP←SSP-2
PC←obj
However, n is the number of bytes in this instruction and differs depending on obj.

Description
• This instruction is a 64K-byte space indirect call based on the contents of obj (word length).
• This instruction calls any addresss in the 64K bytes in the current physical segment.
• obj is the word-length contents of data memory or a register.  The first address of the

subroutine must be set in obj prior to executing this instruction.  The subroutine must exist
within the current physical segment.

• The state of the stack after execution of a CAL instruction is shown below.  Subroutines
called with a CAL instruction return using an RT instruction.

 SSP after call 7          0 ↑ Low addresses
LSBSSP before call P C

MSB

↓ High addresses

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

CAL [∗∗] <word> EB +5

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  C-3

CLR  A Word Clear

Function

A←0
DD←1

Description
• This instruction clears the accumulator (word length).
• This instruction also sets DD to 1 (word).
• This instruction is functionally identical to the "L A,#0" instruction, including the effect on

flags.  However, this instruction requires fewer bytes and cycles.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
1 1

Codes

Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

CLR A FA 2



Chapter 3  Instruction Details
Instruction Set

C-4  Chapter 3 nX-8/500S Instruction Manual

CLR  obj Word Clear

Function

obj←0

Description
• This instruction clears obj (word length).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

CLR ∗∗ <word> C7 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  C-5

CLRB  A  Byte Clear

Function

AL←0
DD←0

Description
• This instruction clears the accumulator (byte length).
• This instruction also sets DD to 0 (byte).
• This instruction is functionally identical to the "LB A,#0" instruction, including the effect on

flags.  However, this instruction requires fewer bytes and cycles.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
1 0

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

CLRB A FB 2



Chapter 3  Instruction Details
Instruction Set

C-6  Chapter 3 nX-8/500S Instruction Manual

CLRB  obj Byte Clear

Function

obj←0

Description
• This instruction clears obj (byte length).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

CLRB ∗ <byte> C7 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  C-7

CMP  A,obj Word Comparison

Function

A-obj

Description
• This instruction compares the contents of obj (word length) to the accumulator (A).
• Actually the contents of obj are subtracted from the contents of the accumulator, and the result

is used to set the PSW flags.  This result can be referenced using conditional branch
instructions.  The accumulator contents do not change.

• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ 1

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

ERn 18  +n 3
PRn 1C  +n 3
#N16 9E N16L N16H 6
fix 9C fix8 4

CMP A

off 9D off8 4

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

CMP A ∗∗ <word> 95 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

C-8  Chapter 3 nX-8/500S Instruction Manual

CMP  obj1,obj2 Word Comparison

Function

obj1-obj2

Description
• This instruction compares the contents of obj1 to obj2 (word length).
• Actually the contents of obj2 are subtracted from the contents of obj1, and the result is used to

set the PSW flags.  This result can be referenced using conditional branch instructions.  The
contents of obj1 do not change.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

fix C4 fix8 N16L N16H 8CMP
off

#N16
C5 off8 N161 N16H 8

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <word> 90 fix8 +5
off <word> 91 off8 +5
sfr <word> 92 sfr8 +5
#N16 <word> 93 N16L N16H +6

CMP ∗∗

A <word> 94 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  C-9

CMPB  A,obj  Byte Comparison

Function

AL-obj

Description
• This instruction compares the contents of obj (byte length) to the accumulator low byte (AL).
• Actually the contents of obj are subtracted from the contents of the accumulator, and the result

is used to set the PSW flags.  This result can be referenced using conditional branch
instructions.  The accumulator contents do not change.

• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ 0

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

Rn 18+n 3
#N8 9E N8 4
fix 9C fix8 4

CMPB A

off 9D off8 4

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

CMPB A ∗ <byte> 95 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

C-10  Chapter 3 nX-8/500S Instruction Manual

CMPB  obj1,obj2 Byte Comparison

Function

obj1-obj2

Description
• This instruction compares the contents of obj1 to obj2 (byte length).
• Actually the contents of obj2 are subtracted from the contents of obj1, and the result is used to

set the PSW flags.  This result can be referenced using conditional branch instructions.  The
contents of obj1 do not change.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

fix D4 fix8 N8 6CMPB
off

#N8
D5 off8 N8 6

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <byte> 90 fix8 +5
off <byte> 91 off8 +5
sfr <byte> 92 sfr8 +5
#N8 <byte> 93 N8 +4

CMPB ∗

A <byte> 94 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  C-11

CMPC  A, [obj] Word ROM Comparison (Indirect)

Function

A - TSR:(obj)

Description
• This instruction compares ROM data (word length) to the accumulator (A).
• The ROM data is word data in the current table segment, with the contents of obj as the

address.
• Actually the ROM data is subtracted from the contents of the accumulator, and the result is

used to set the PSW flags.  This result can be referenced using conditional branch
instructions.  The accumulator contents do not change.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

CMPC A [∗∗] <word> D8 +9

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

C-12  Chapter 3 nX-8/500S Instruction Manual

CMPC  A,T16[obj] Word ROM Comparison (Indirect With 16-Bit Base)

Function

A - TSR:(T16 +obj)

Description
• This instruction compares ROM data (word length) to the accumulator (A).
• The ROM data is word data in the current table segment, with the contents of obj added to the

base address of the data table (T16) as the address.
• Actually the ROM data is subtracted from the contents of the accumulator, and the result is

used to set the PSW flags.  This result can be referenced using conditional branch
instructions.  The accumulator contents do not change.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

CMPC A T16[∗∗] <word> E6 T16L T16H +13

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  C-13

CMPC  A,Tadr Word ROM Comparison (Direct)

Function

A - TSR:Tadr

Description
• This instruction compares ROM data (word length) to the accumulator (A).
• The ROM data is the word data in the current table segment indicated by Tadr.
• Actually the ROM data is subtracted from the contents of the accumulator, and the result is

used to set the PSW flags.  This result can be referenced using conditional branch
instructions.  The accumulator contents do not change.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

CMPC A Tadr <dumyW> B6 TadrL TadrH +15



Chapter 3  Instruction Details
Instruction Set

C-14  Chapter 3 nX-8/500S Instruction Manual

CMPCB  A,[obj] Byte ROM Comparison (Indirect)

Function

AL - TSR:(obj)

Description
• This instruction compares ROM data (byte length) to the accumulator low byte (AL).
• The ROM data is byte data in the current table segment, with the contents of obj as the

address.
• Actually the ROM data is subtracted from the contents of the accumulator, and the result is

used to set the PSW flags.  This result can be referenced using conditional branch
instructions.  The accumulator contents do not change.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

CMPCB A [∗∗] <word> D9 +6

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  C-15

CMPCB  A,T16[obj] Byte ROM Comparison (Indirect With 16-Bit Base)

Function

AL - TSR:(T16 +obj)

Description
• This instruction compares ROM data (byte length) to the accumulator low byte (AL).
• The ROM data is byte data in the current table segment, with the contents of obj added to the

base address of the data table (T16) as the address.
• Actually the ROM data is subtracted from the contents of the accumulator, and the result is

used to set the PSW flags.  This result can be referenced using conditional branch
instructions.  The accumulator contents do not change.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

CMPCB A T16[∗∗] <word> F6 T16L T16H +10

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

C-16  Chapter 3 nX-8/500S Instruction Manual

CMPCB  A,Tadr Byte ROM Comparison (Direct)

Function

AL - TSR:Tadr

Description
• This instruction compares ROM data (byte length) to the accumulator low byte (AL).
• The ROM data is the byte data in the current table segment indicated by Tadr.
• Actually the ROM data is subtracted from the contents of the accumulator, and the result is

used to set the PSW flags.  This result can be referenced using conditional branch
instructions.  The accumulator contents do not change.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

CMPCB A Tadr <dumyB> B6 TadrL TadrH 12



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  C-17

CPL  C  Complement Carry

Function

C←C

Description
• This instruction complements the carry flag.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

CPL C FD 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  D-1

DEC  A  Word Decrement

Function

A←A-1

Description
• This instruction decrements the word-length accumulator by 1.
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ 1

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

DEC A DC 2



Chapter 3  Instruction Details
Instruction Set

D-2  Chapter 3 nX-8/500S Instruction Manual

DEC  obj  Word Decrement

Function

obj←obj-1

Description
• This instruction decrements the word-length obj by 1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

DEC PRn 50 +n 3

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

DEC ∗∗ <word> D6 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  D-3

DECB  A  Byte Decrement

Function

AL←AL-1

Description
• This instruction decrements the accumulator low byte (AL) by 1.
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ 0

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

DECB A DC 2



Chapter 3  Instruction Details
Instruction Set

D-4  Chapter 3 nX-8/500S Instruction Manual

DECB  obj  Byte Decrement

Function

obj←obj-1

Description
• This instruction decrements the byte-length obj by 1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
DECB Rn (n=0-3) D0 +n 3

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

DECB ∗ <byte> D6 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  D-5

DI Disable Interrupts

Function

MIE←0

Description
• This instruction disables all maskable interrupts.
• This instruction resets MIE (mask interrupt enable flag: PSW bit 8) to 0.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

DI DA 2



Chapter 3  Instruction Details
Instruction Set

D-6  Chapter 3 nX-8/500S Instruction Manual

DIV  obj  Word Division

Function

<A,ER0> ← <A,ER0> ÷ obj
ER1 ← <A,ER0> mod obj

Description
• This instruction divides a 32-bit number by a 16-bit number, giving a 32-bit quotient and 16-

bit remainder.
• The dividend is 32 bits, formed with the accumulator (A) as the upper word and extended

local register 0 (ER0) as the lower word.  The divisor is the word data indicated by obj.  For
the results of the division, the quotient is stored in the A and ER0 pair, and the remainder is
stored in extended local register 1 (ER1).

• This instruction functions differently than previous devices (nX-8/100-400) in the way
registers are used.  Care should be exercised.

• IF the divisor is 0, the carry flag will be set to 1.  In this case, the quotient and the remainder
will be undefined.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗

C :The carry flag will be 1 if the divisor is 0, and will be 0 otherwise.
Z :The zero flag will be 1 if the quotient is 0, and will be 0 otherwise.

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

DIV ∗∗ <word> A8 +42

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  D-7

DIVB  obj  Byte Division

Function

A ← A ÷ obj
R1 ← A mod obj

Description
• This instruction divides a 16-bit number by a 8-bit number, giving a 16-bit quotient and 8-bit

remainder.
• The dividend is the 16-bit accumulator (A).  The divisor is the byte data indicated by obj.

For the results of the division, the quotient is stored in A, and the remainder is stored in local
register 1 (R1).

• IF the divisor is 0, the carry flag will be set to 1.  In this case, the quotient and the remainder
will be undefined.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗

C : The carry flag will be 1 if the divisor is 0, and will be 0 otherwise.
Z : The zero flag will be 1 if the quotient is 0, and will be 0 otherwise.

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

DIVB ∗ <byte> A8 +22

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

D-8  Chapter 3 nX-8/500S Instruction Manual

DIVQ  obj  Word Quick Division

Function

A ← <A,ER0> ÷ obj
ER1 ← <A,ER0> mod obj

Description
• This instruction divides a 32-bit number by a 16-bit number, giving a 16-bit quotient and 16-

bit remainder.
• The dividend is 32 bits, formed with the accumulator (A) as the upper word and extended

local register 0 (ER0) as the lower word.  The divisor is the word data indicated by obj.  For
the results of the division, the quotient is stored in A, and the remainder is stored in extended
local register 1 (ER1).

• Except for when the quotient needs more than 16-bit precision, this instruction is functionally
the same as the "DIV obj" instruction, but execution time is approximately half.

• IF the divisor is 0, the carry flag will be set to 1.  In this case, the quotient and the remainder
will be undefined.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗

C : The carry flag will be 1 if the divisor is 0, and will be 0 otherwise.
Z : The zero flag will be 1 if the quotient is 0, and will be 0 otherwise.  However,

it is undefined when OV is 1.
OV: The overflow flag will be 1 if the quotient is greater than 65535, and will be 0

otherwise.
Codes

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

DIVQ ∗∗ <word> FB +24

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  D-9

DJNZ  obj,radr  Loop

Function

obj←obj-1
if obj ≠ 0 then PC←radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127

Description
• This instruction implements a loop process with obj as the counter.
• This instruction decrements the byte-length obj.  If the result is not 0, then control will jump

to the address indicated by radr.  A loop count of up to 256 times can be implemented.
• The jump range possible with the loop instruction is -128 to +127 bytes of the first address of

the next instruction.
• Use of local register R4 or R5 can make the instruction more efficient (fewer bytes), by

allowing jumps only to lower addresses.  The jump range possible with this loop instruction
is -128 to -1 bytes of the first address of the next instruction.  The assembler chooses the
optimal instruction.

Example)  Assembler selection

LOOP: ; R0, R4, and R5 are loop counters

DJNZ R4,LOOP ; 2-byte instruction

DJNZ R0,LOOP ; 3-byte instruction

DJNZ R5,NEXT ; 3-byte instruction

NEXT:

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD



Chapter 3  Instruction Details
Instruction Set

D-10  Chapter 3 nX-8/500S Instruction Manual

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

R4 05 rdiff7 7/10
R5 05 rdiff7+80 7/10
X1L 60 EA rdiff8 7/10
X2L 61 EA rdiff8 7/10
DPL 62 EA rdiff8 7/10

DJNZ

USPL

radr

63 EA rdiff8 7/10

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

DJNZ ∗ radr <byte> EA rdiff8 +5/8

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

Nx-8/500S Instruction Manual Chapter 3  E-1

EI Enable Interrupts

Function

MIE←1

Description
• This instruction enables maskable interrupts.
• This instruction sets MIE (mask interrupt enable flag: PSW bit 8) to 1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

EI DB 2



Chapter 3  Instruction Details
Instruction Set

E-2  Chapter 3 nX-8/500S Instruction Manual

EXTND Byte to Word Sign Extend

Function

A15-7 ← A7

DD ← 1

Description
• This instruction sign extends the contents of the accumulator low byte (AL) to 16 bits.  The

extended result is returned to the accumulator (A).
• The actual operation copies bit 7 of A to bits 8-15.  At the same time the data descriptor

(DD) is set to 1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ 1

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

EXTND FC 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  F-1

FCAL  Fadr  24-Bit Space (16M Bytes: Entire Program Area) Direct Call

Function

(SSP)← PC+5, SSP← SSP-2
(SSP)← CSR, SSP←SSP-2,
CSR←Fadr23-16

PC←Fadr15-0

However, 0:0000H ≤ Fadr ≤ 0FFH:0FFFFH

Description
• This instruction calls any addresss in the entire program space that can be accessed with the

nX-8/500S core.
• The first address of the subroutine is coded in Fadr.  The state of the stack after execution of

an FCAL instruction is shown below. Subroutines called with a FCAL instruction return using
an FRT instruction.

 SSP after call 7          0 ↑ Low addresses
C S R

-
LSB

SSP before call P C
MSB

↓ High addresses

• This instruction is executable only under the medium or large memory models.
• If this instruction is executed under the small or compact memory models, then an op-code

trap (reset) will occur.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

FCAL Fadr 07 08 FadrL FadrM FadrH 13



Chapter 3  Instruction Details
Instruction Set

F-2  Chapter 3 nX-8/500S Instruction Manual

FILL  A Word Fill

Function

A←0FFFFH

Description
• This instruction fills the accumulator with 0FFFFH.
• This instruction also sets DD to 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
1

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

FILL A BC D7 4



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  F-3

FILL  obj Word Fill

Function

obj←0FFFFH

Description
• This instruction fills the word-length obj with 0FFFFH.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

FILL ∗∗ <word> D7 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

F-4  Chapter 3 nX-8/500S Instruction Manual

FILLB  A Byte Fill

Function

AL←0FFH

Description
• This instruction fills the accumulator low byte (AL) with 0FFH.
• This instruction also sets DD to 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
0

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

FILLB A BC D7 4



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  F-5

FILLB  obj Byte Fill

Function

obj←0FFH

Description
• This instruction fills the byte-length obj with 0FFH.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

FILLB ∗∗ <byte> D7 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

F-6  Chapter 3 nX-8/500S Instruction Manual

FJ  Fadr 24-Bit Space (16M Bytes: Entire Program Area) Direct Jump

Function

CSR←Fadr23-16

PC←Fadr15-0

However, 0:0000H ≤ Fadr ≤ 0FFH:0FFFFH

Description
• This instruction jumps to any addresss in the entire program space that can be accessed with

the nX-8/500S core.
• The jump address is coded in Fadr.
• This instruction is executable only under the medium or large memory models.  If it is

executed under the small or compact memory models, then an op-code trap (reset) will occur.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

FJ Fadr <dumyW> FA FadrL FadrM FadrH 11



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  F-7

FRT Return From Far Subroutine

Function

SSP←SSP+2, CSR←(SSP)
SSP←SSP+2, PC←(SSP)

Description
• This instruction returns from a far subroutine.
• This instruction is used to return from an FCAL (24-bit space direct call) or VCAL (vector

call) instruction.
• This instruction is executable only under the medium or large memory models.  If this

instruction is executed under the small or compact memory models, then an op-code trap
(reset) will occur.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

FRT 07 09 9



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  I-1

INC  A  Word Increment

Function

A←A+1

Description
• This instruction increments the word-length accumulator by 1.
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ 1

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

INC A CC 2



Chapter 3  Instruction Details
Instruction Set

I-2  Chapter 3 nX-8/500S Instruction Manual

INC  obj  Word Increment

Function

obj←obj+1

Description
• This instruction increments the word-length obj by 1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
INC PRn 40 +n 3

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

INC ∗∗ <word> C6 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  I-3

INCB  A  Byte Increment

Function

AL←AL+1

Description
• This instruction increments the accumulator low byte (AL) by 1.
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ 0

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

INCB A CC 2



Chapter 3  Instruction Details
Instruction Set

I-4  Chapter 3 nX-8/500S Instruction Manual

INCB  obj  Byte Increment

Function

obj←obj+1

Description
• This instruction increments the byte-length obj by 1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
INCB Rn (n=0-3) C0  +n 3

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

INCB ∗ <byte> C6 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  J-1

J  Cadr 64K-Byte Space (Within Current Physical Code Segment) Direct Jump

Function

PC←Cadr
However, CSR:0000H ≤ Cadr ≤ CSR:0FFFFH

Description
• This instruction jumps to any addresss in the 64K bytes in the current physical segment.
• The jump address is coded in Cadr.  The jump address must exist within the current physical

segment.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

J Cadr 03 CadrL CadrH 7



Chapter 3  Instruction Details
Instruction Set

J-2  Chapter 3 nX-8/500S Instruction Manual

J  [obj] 64K-Byte Space (Within Current Physical Code Segment) Indirect Jump

Function

PC←obj

Description
• This instruction is a 64K-byte space indirect jump based on the contents of obj (word length).
• This instruction jumps to any addresss in the 64K bytes in the current physical segment.
• obj is the word-length contents of data memory or a register.  The jump address must be set

in obj prior to executing this instruction.  The jump address must exist within the current
physical segment.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

J [∗∗] <word> C9 +4

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  J-3

JBR  obj.bit,radr  Bit Test and Jump

Function

if obj.bit=0 then PC←radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127

Description
• This instruction jumps if the bit specified by obj.bit is 0.
• The bit tested is at the bit position specified by bit within the one byte of data specified by obj.
• The jump range possible with this jump instruction is -128 to +127 bytes of the first address of

the next instruction.
Example)

JBR A.5, LABEL ; bit 5 of AL (accumulator low byte)

JBR R0.7, LABEL ; bit 7 of R0 (local register 0)

JBR [DP].1, LABEL ; bit 1 of data specified by DP (data pointer)

JBR BIT_SYM, LABEL ; bit indicated by BIT_SYM (user-defined bit symbol)

JBR sbafix BIT_FIX, LABEL ; bit indicated by BIT_FIX (user-defined fixed page bit symbol)

JBR sbaoff BIT_OFF, LABEL; bit indicated by BIT_OFF (user-defined current page bit symbol)

LABEL:

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD



Chapter 3  Instruction Details
Instruction Set

J-4  Chapter 3 nX-8/500S Instruction Manual

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

sbafix 58  +bit sbafix6+C0 rdiff8 6/9JBR
sbaoff

radr
48  +bit sbaoff6+C0 rdiff8 6/9

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

JBR ∗.bit radr <byte> 20  +bit rdiff8 +4/8

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  J-5

JBRS  obj.bit,radr  Bit Test and Jump (With Bit Set)

Function

if obj.bit=0 then obj.bit←1,PC←radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127

Description
• This instruction jumps if the bit specified by obj.bit is 0, and sets that bit to 1.
• The bit tested is at the bit position specified by bit within the one byte of data specified by obj.
• The jump range possible with this jump instruction is -128 to +127 bytes of the first address of

the next instruction.

Example)
JBRS A.5, LABEL ; bit 5 of AL (accumulator low byte)

JBRS R0.7, LABEL ; bit 7 of R0 (local register 0)

JBRS [DP].1, LABEL ; bit 1 of data specified by DP (data pointer)

JBRS BIT_SYM, LABEL ; bit indicated by BIT_SYM (user-defined bit symbol)

JBRS sbafix BIT_FIX, LABEL ; bit indicated by BIT_FIX (user-defined fixed page bit symbol)

JBRS sbaoff BIT_OFF, LABEL; bit indicated by BIT_OFF (user-defined current page bit symbol)

LABEL:

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD



Chapter 3  Instruction Details
Instruction Set

J-6  Chapter 3 nX-8/500S Instruction Manual

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

JBRS ∗.bit radr <byte> 30  +bit rdiff8 +4/10

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  J-7

JBS  obj.bit,radr  Bit Test and Jump

Function

if obj.bit=0 then PC←radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127

Description
• This instruction jumps if the bit specified by obj.bit is 1.
• The bit tested is at the bit position specified by bit within the one byte of data specified by obj.
• The jump range possible with this jump instruction is -128 to +127 bytes of the first address of

the next instruction.
Example)

JBS A.5, LABEL ; bit 5 of AL (accumulator low byte)

JBS R0.7, LABEL ; bit 7 of R0 (local register 0)

JBS [DP].1, LABEL ; bit 1 of data specified by DP (data pointer)

JBS BIT_SYM, LABEL ; bit indicated by BIT_SYM (user-defined bit symbol)

JBS sbafix BIT_FIX, LABEL ; bit indicated by BIT_FIX (user-defined fixed page bit symbol)

JBS sbaoff BIT_OFF, LABEL; bit indicated by BIT_OFF (user-defined current page bit symbol)

LABEL:

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD



Chapter 3  Instruction Details
Instruction Set

J-8  Chapter 3 nX-8/500S Instruction Manual

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

sbafix 58  +bit sbafix6+80 rdiff8 6/9JBS
sbaoff

radr
48  +bit sbaoff6+80 rdiff8 6/9

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

JBS ∗.bit radr <byte> 28  +bit rdiff8 +4/8

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  J-9

JBSR  obj.bit,radr  Bit Test and Jump (With Bit Reset)

Function

if obj.bit=1 then obj.bit←0,PC←radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127

Description
• This instruction jumps if the bit specified by obj.bit is 1, and resets that bit to 0.
• The bit tested is at the bit position specified by bit within the one byte of data specified by obj.
• The jump range possible with this jump instruction is -128 to +127 bytes of the first address of

the next instruction.

Example)
JBSR A.5, LABEL ; bit 5 of AL (accumulator low byte)

JBSR R0.7, LABEL ; bit 7 of R0 (local register 0)

JBSR [DP].1, LABEL ; bit 1 of data specified by DP (data pointer)

JBSR BIT_SYM, LABEL ; bit indicated by BIT_SYM (user-defined bit symbol)

JBSR sbafix BIT_FIX, LABEL ; bit indicated by BIT_FIX (user-defined fixed page bit symbol)

JBSR sbaoff BIT_OFF, LABEL; bit indicated by BIT_OFF (user-defined current page bit symbol)

LABEL:

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD



Chapter 3  Instruction Details
Instruction Set

J-10  Chapter 3 nX-8/500S Instruction Manual

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

JBSR ∗.bit radr <byte> 38  +bit rdiff8 +4/10

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  J-11

JC     cond,radr
Jcond  radr Conditional Jump

Function

if cond is true then PC←radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127

Description
• This instruction jumps if the condition specified by cond is true.
• The condition is indicated by the flag state remaining in the PSW (program status word).

Therefore, this instruction presumes prior execution of an instruction that leaves its result in
the PSW (comparison, etc.).  This instruction is then used to evaluate that result.

• The cond can be coded as an operand or as part of the mnemonic string.

Example)
CMP A,#9
JC GT, LABEL ; cond is operand

CMP A,#0FH
JLE LABEL ; cond is part of mnemonic string

 :
LABEL:

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
Jcond JC cond Meaning Flag Conditions 1st 2nd 3rd
JGT JC GT unsigned> (Z=0) ∩ (C=0) F0 rdiff8 4/6
JGE
JNC

JC GE
JC NC

unsigned≥ C=0 F5 rdiff8 4/6

JLT
JCY

JC LT
JC CY

unsigned< C=1 F2 rdiff8 4/6

JLE JC LE unsigned≤ (Z=1) ∪ (C=1) F7 rdiff8 4/6
JEQ
JZ

JC EQ
JC ZF

= Z=1 F1 rdiff8 4/6

JNE
JNZ

JC NE
JC NZ

≠ Z=0 F6 rdiff8 4/6

JGTS JC GTS signed> ((OV    S) ∪ Z )=0 <dumyB> FE rdiff8 6/10
JGES JC GES signed≥ (OV   S) =0 <dumyB> FF rdiff8 6/10
JLTS JC LTS signed< (OV   S) =1 <dumyB> FC rdiff8 6/10
JLES JC LES signed≤ ((OV   S) ∪ Z )=0 <dumyB> FD rdiff8 6/10
JPS JC PS positive S=0 F4 rdiff8 4/6
JNS JC NS negative S=1 F3 rdiff8 4/6
JOV JC OV overflow OV=1 9A 28 +1 rdiff8 6/10
JNV JC NV no overflow OV=0 9A 20 +1 rdiff8 6/10

∪
∪
∪
∪



Chapter 3  Instruction Details
Instruction Set

J-12  Chapter 3 nX-8/500S Instruction Manual

JRNZ  DP, radr  Loop

Function

DPL←DPL-1
if DPL ≠ 0 then PC← radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127

Description
• This instruction implements a loop process with the data pointer low byte (DPL) as the

counter.
• This instruction decrements the contents of DPL.  If the result is not 0, then control will jump

to the address indicated by radr.  A loop count of up to 256 times can be implemented.
• The jump range possible with the loop instruction is -128 to +127 bytes of the first address of

the next instruction.

This instruction is completely identical to "DJNZ DPL,radr".  It is provided to support source
level compatibility with nX-8/100-400.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
JRNZ DP radr 62 EA rdiff8 6/11



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  L-1

L  A,obj Word Load

Function

A←obj
DD←1

Description
• This instruction loads the contents of obj (word length) into the accumulator (A).
• Execution of this instruction sets DD to 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ 1

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

#N16 F8 N16L N16H 6
ERn 74  +n 2
PRn 70  +n 2
[X1] 80 4
[DP] 82 4
[DP−] 81 5
[DP+] 83 5
fix 84 fix8 4
off 85 off8 4
sfr 86 sir8 4
dir 87 dirL dirH 6
D16[X1] 88 D16L D16H 6
n7[USP] 89 n7 6

L A

n7[DP] 89 80 +n7 6



Chapter 3  Instruction Details
Instruction Set

L-2  Chapter 3 nX-8/500S Instruction Manual

LB  A,obj  Byte Load

Function

AL←obj
DD←0

Description
• This instruction loads the contents of obj (byte length) into the accumulator low byte (AL).
• Execution of this instruction sets DD to 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ 0

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

#N8 F9 N8 4
Rn 78  +n 2
[X1] 90 4
[DP] 92 4
[DP−] 91 5
[DP+] 93 5
fix 94 fix8 4
off 95 off8 4
sfr 96 sir8 4
dir 97 dirL dirH 6
D16[X1] 98 D16L D16H 6
n7[USP] 99 n7 6

LB A

n7[DP] 99 80 +n7 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  L-3

LC  A,[obj]  Word ROM Load (Indirect)

Function

A ← TSR:(obj)

Description
• This instruction loads ROM data (word length) into the accumulator (A).
• The ROM data is word data in the current table segment, with the contents of obj as the

address.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

LC A [∗∗] <word> DA +9

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

L-4  Chapter 3 nX-8/500S Instruction Manual

LC  A,T16[obj]  Word ROM Load (Indirect With 16-Bit Base)

Function

A ← TSR:(T16 + obj)

Description
• This instruction loads ROM data (word length) into the accumulator (A).
• The ROM data is word data in the current table segment, with the contents of obj added to the

base address of the data table (T16) as the address.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

LC A T16[∗∗] <word> E7 T16L T16H +13

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  L-5

LC  A,Tadr  Word ROM Load (Direct)

Function

A ← TSR:Tadr

Description
• This instruction loads ROM data (word length) into the accumulator (A).
• The ROM data is the word data in the current table segment indicated by Tadr.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

LC A Tadr <word> B7 TadrL TadrH 15



Chapter 3  Instruction Details
Instruction Set

L-6  Chapter 3 nX-8/500S Instruction Manual

LCB  A,[obj]  Byte ROM Load (Indirect)

Function

AL ← TSR:(obj)

Description
• This instruction loads ROM data (byte length) into the accumulator low byte (AL).
• The ROM data is byte data in the current table segment, with the contents of obj as the

address.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

LCB A [∗∗] <word> DB +6

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  L-7

LCB  A,T16[obj]  Byte ROM Load (Indirect With 16-Bit Base)

Function

AL ← TSR:(T16 + obj)

Description
• This instruction loads ROM data (byte length) into the accumulator low byte (AL).
• The ROM data is byte data in the current table segment, with the contents of obj added to the

base address of the data table (T16) as the address.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

LCB A T16[∗∗] <word> F7 T16L T16H +10

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

L-8  Chapter 3 nX-8/500S Instruction Manual

LCB  A,Tadr  Byte ROM Load (Direct)

Function

AL ← TSR:Tadr

Description
• This instruction loads ROM data (byte length) into the accumulator low byte (AL).
• The ROM data is the byte data in the current table segment indicated by Tadr.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

LCB A Tadr <dumyB> B7 TadrL TadrH 12



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  M-1

MAC Multiply-Addition Calculation

Function

MAC start bit←1
 (SB       sfr  MAC start bit)

Description
• This instruction starts multiply-addition calculations.  It can be executed only with target

devices in which a multiply-addition calculation circuit exists as an SFR.
• Refer to the appropriate hardware manual for more detailed information of MAC instruction

function.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

MAC B6 *1 08 +bit 4

*1 is the byte address of the MAC start bit.
 Bit is the bit position of MAC start bit



Chapter 3  Instruction Details
Instruction Set

M-2  Chapter 3 nX-8/500S Instruction Manual

MB  C,obj.bit Move Bit

Function

C ← obj.bit

Description
• This instruction moves the contents of the bit specified by bit in obj (byte length) to the carry

flag (C).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

MB C ∗.bit <byte> 10 +bit +3

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  M-3

MB  obj.bit,C Move Bit

Function

obj.bit ← C

Description
• This instruction moves the contents of the carry flag (C) to the bit specified by bit in obj (byte

length).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

MB ∗.bit C <byte> 18 +bit +3

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

M-4  Chapter 3 nX-8/500S Instruction Manual

MBR  C,obj Move Bit (Register Indirect Bit Specification)

Function

C ← obj.(AL)

Description
• This instruction moves the contents of the bit at the specified position within the bit block to

the carry flag (C).
• The bit block is the block of 256 bits starting from the address obj.  A byte addressing

specification is coded in obj.
• The bit position is 0-255, specified by the contents of the accumulator low byte (AL).
• The same instruction coded for nX-8/100-400 has a different function.  For nX-8/100-400,

only the lower 3 bits of AL are valid for the bit position specification.  In this case, only the 8
bits of obj can specified as the target bit.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

MBR C ∗ <byte> BA +6

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  M-5

MBR  obj,C Move Bit (Register Indirect Bit Specification)

Function

obj.(AL) ← C

Description
• This instruction moves the contents of the carry flag to the bit at the specified position within

the bit block.
• The bit block is the block of 256 bits starting from the address obj.  A byte addressing

specification is coded in obj.
• The bit position is 0-255, specified by the contents of the accumulator low byte (AL).
• The same instruction coded for nX-8/100-400 has a different function.  For nX-8/100-400,

only the lower 3 bits of AL are valid for the bit position specification.  In this case, only the 8
bits of obj can specified as the target bit.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

MBR ∗ C <byte> BB +5

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

M-6  Chapter 3 nX-8/500S Instruction Manual

MOV  obj1,obj2  Word Move

Function

obj1 ← obj2

Description
• This instruction moves a word of data from obj1 to obj2.
• The address of the source word is coded in obj1.
• The address of the destination word is coded in obj2.
• Difference with nX-8/100-400:

the instruction "MOV A,obj" does not modify the data descriptor (DD).
For DD in nX-8/100-400, "MOV A,obj" is handled the same as an L instruction (that is,
DD is set to 1).  For DD in nX-8/500S, DD does not change.  DD switching by the MOV
instruction has been eliminated.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

However, all flags will change if PSW is the destination.

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

ERn 24  +n N16L N16H 6
PRn 20  +n N16L N16H 6
off C7 off8 N16L N16H 8
sfr C6 sfr8 N16L N16H 8

MOV

LRB

#N16

C6 02 N16L N16H 8



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  M-7

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

A <word> 97 +2
ERn <word> 70  +n +2
PRn <word> 74  +n +2
[X1] <word> 88 +4
[DP] <word> 8A +4
[DP−] <word> 89 +5
[DP+] <word> 8B +5
fix <word> 86 fix8 +4
off <word> 87 off8 +4
sfr <word> 96 sfr8 +4
PSW <word> 96 04 +4
SSP <word> 96 00 +4
LRB <word> 96 02 +4
dir <word> 9B dirL dirH +6
D16[X1] <word> 98 D16L D16H +6
D16[X2] <word> 99 D16L D16H +6
n7[Dp] <word> 9A n7 +6
n7[USP] <word> 9A 80 +n +6
[X1+A] <word> F8 +6
[X1+R0]

∗∗

<word> F9 +6
A <word> AA +2

MOV

∗∗
#N16 <word> AB N16L N16H +6

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

M-8  Chapter 3 nX-8/500S Instruction Manual

MOVB  obj1,obj2 Byte Move

Function

obj1 ← obj2

Description
• This instruction moves a byte of data from obj1 to obj2.
• The address of the source byte is coded in obj1.
• The address of the destination byte is coded in obj2.
• Difference with nX-8/100-400:

the instruction "MOVB A,obj" does not modify the data descriptor (DD).
For DD in nX-8/100-400, "MOVB A,obj" is handled the same as an LB instruction (that is,
DD is set to 0).  For DD in nX-8/500S, DD does not change. DD switching by the MOVB
instruction has been eliminated.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

However, all flags will change if PSW is the destination.

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

Rn 10 +n NB 4
off D7 off8 N8 6

MOVB

sfr

#N8

D6 sfr8 N8 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  M-9

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

A <byte> 97 +2
Rn <byte> 70  +n +2
[X1] <byte> 88 +4
[DP] <byte> 8A +4
[DP−] <byte> 89 +5
[DP+] <byte> 8B +5
fix <byte> 86 fix8 +4
off <byte> 87 off8 +4
sfr <byte> 96 sfr8 +4
PSWL <byte> 96 04 +4
PSWH <byte> 96 05 +4
dir <byte> 9B dirL dirH +6
D16[X1] <byte> 98 D16L D16H +6
D16[X2] <byte> 99 D16L D16H +6
n7[DP] <byte> 9A n7 +6
n7[USP] <byte> 9A 80  +n7 +6
[X1+A] <byte> F8 +6
[X1+R0]

∗

<byte> F9 +6
A <byte> AA +2

MOVB

∗
#N8 <byte> AB N8 +4

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

M-10  Chapter 3 nX-8/500S Instruction Manual

MUL  obj Word Multiplication

Function

<A,ER0> ← A×obj

Description
• This instruction multiplies a 16-bit number by a 16-bit number, giving a 32-bit product.
• The multiplicand is the contents of the accumulator (A).  The multiplier is the word data

indicated by obj.  For the results of the multiplication, the product is stored in the A and ER0
pair.

• Refer to the appropriate hardware manual for with or without of multiplier circuit.
• Difference with nX-8/100-400:

Word addressing can be coded in the multiplier.  This has to be a fixed register for nX-
8/100-400.
The registers that store the high and low words of the product are different.
nX-8/500S : <A,ER0> ← A × obj
nX-8/100-400 : <ER1,A> ← A × ER0

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Z: The zero flag will be 1 if the product is 0, and will be 0 otherwise.
Codes

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

MUL ∗∗ (Without
Multiplier)

<word> A9 +21

MUL ∗∗ (With Multiplier) <word> A9 +3

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  M-11

MULB  obj Byte Multiplication

Function

A ← AL × obj

Description
• This instruction multiplies an 8-bit number by an 8-bit number, giving a 16-bit product.
• The multiplicand is the contents of the accumulator low byte (AL).  The multiplier is the byte

data indicated by obj.  For the results of the multiplication, the product is stored in the
accumulator (A).

• Refer to the appropriate hardware manual for with or without of multiplier circuit.
• Difference with nX-8/100-400:

Byte addressing can be coded in the multiplier.  This has to be a fixed register for
nX-8/100-400.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Z: The zero flag will be 1 if the product is 0, and will be 0 otherwise.

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

MULB ∗ (Without
Multiplier)

<byte> A9 +12

MULB ∗ (With Multiplier) <byte> A9 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  N-1

NEG  A  Word Negate Sign

Function

A ← -A

Description
• This instruction takes the 2's complement of the contents of the accumulator (A), and returns

the results in A.
• Execution of this instruction sets DD to 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ 1

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

NEG A CF 3



Chapter 3  Instruction Details
Instruction Set

N-2  Chapter 3 nX-8/500S Instruction Manual

NEGB  A Byte Negate Sign

Function

A ← -AL

Description
• This instruction takes the 2's complement of the contents of the accumulator low byte (AL),

and returns the results in AL.
• Execution of this instruction sets DD to 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ 0

Codes

Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

NEG A CF 3



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  N-3

NOP  No Operation

Function

NO  OPERATION

Description
• This instruction just consumes a fixed number of cycles and moves the program counter to the

next instruction.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

NOP 00 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  O-1

OR  A,obj Word Logical OR

Function

A ← A ∪ obj

Description
• This instruction takes the word logical OR of the contents of obj (word length) and the

accumulator (A), and stores the result in the accumulator.
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ 1

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

off CD off8 4OR A
#N16 CE N16L N16H 6

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

OR A ∗∗ <word> C5 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

O-2  Chapter 3 nX-8/500S Instruction Manual

OR  obj1,obj2  Word Logical OR

Function

obj1 ← obj1 ∪ obj2

Description
• This instruction takes the word logical OR of the contents of obj1 (word length) and obj2

(word length), and stores the result in obj1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <word> C0 fix8 +5
off <word> C1 off8 +5
sfr <word> C2 sfr8 +5
#N16 <word> C3 N16L N16H +6

OR ∗∗

A <word> C4 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  O-3

ORB  A,obj  Byte Logical OR

Function

AL ← AL ∪ obj

Description
• This instruction takes the word logical OR of the contents of obj (byte length) and the

accumulator low byte (AL), and stores the result in the accumulator.
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ 0

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

off CD off8 4ORB A
#N8 CE N8 4

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

ORB A ∗ <byte> C5 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

O-4  Chapter 3 nX-8/500S Instruction Manual

ORB  obj1,obj2  Byte Logical OR

Function

obj1 ← obj1 ∪ obj2

Description
• This instruction takes the word logical OR of the contents of obj1 (byte length) and obj2 (byte

length), and stores the result in obj1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <byte> C0 fix8 +5
off <byte> C1 off8 +5
sfr <byte> C2 sfr8 +5
#N8 <byte> C3 N8 +4

ORB ∗

A <byte> C4 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  P-1

POPS  register_list  Pop Off System Stack

Function

Register group←System stack
SSP ← SSP+n (n:number of popped registers×2)

Description
• This instruction pops data off the system stack to the group of registers specified by the

register_list.
• The register_list can be one of the following:

(1)Extended local register list
(2)Pointing register list
(3)Control register list
(4)ER
(5)PR
(6)CR

A list of register names is coded for (1), (2), or (3).
An extended local register list must be one or more of ER0, ER1, ER2, and ER3.  A pointing
register list must be one or more of X1, X2, DP, and USP.  A control register list must be
one or more of A, LRP, and PSW.
When two or more registers are specified in one of these three ways, they should be delimited
by commas.  The registers can be coded in any order in the operand, but the order in which
they are popped and written is fixed.

For (4), (5), and (6), the symbols indicate register sets.
POPS ER" is equivalent to "POPS ER0,ER1,ER2,ER3."  "POSPS PR" is equivalent to
"POPS X1,X2,DP,USP." "POPS CR" is equivalent to "POPS A,LRB,PSW."  The popping
sequence for local registers is ER0→ER1→ER2→ER3.  For pointer registers, it is
X1→X2→DP→USP.  For control registers, it is PSW→LRB→A.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ ∗

C, Z, S, OV, HC, DD are all changed only when the PSW is popped.  They are unchanged in
all other cases.

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

POPS register_list 06 register mask value 5+4m*

*m: number of popped registers

PUSHS :00
PUSHU :01 00: ERn ER3 ER2 ER1 ER0

POPS :10 01: PR n USP DP X2 X1
POPU :11 10: CRn A LRB PSW

Bit correspondings
to the register to
move is 1

7 6 5 4 3 2 1 0



Chapter 3  Instruction Details
Instruction Set

P-2  Chapter 3 nX-8/500S Instruction Manual

PUSHS  register_list  Push On System Stack

Function

Register group←System stack
SSP←SSP+n (n:number of popped registers×2)

Description
• This instruction pops data off the system stack to the group of registers specified by the

register_list.
• The register_list can be one of the following:

(1)Extended local register list
(2)Pointing register list
(3)Control register list
(4)ER
(5)PR
(6)CR

A list of register names is coded for (1), (2), or (3).
An extended local register list must be one or more of ER0, ER1, ER2, and ER3.  A pointing
register list must be one or more of X1, X2, DP, and USP.  A control register list must be one
or more of A, LRP, and PSW.
When two or more registers are specified in one of these three ways, they should be delimited
by commas.  The registers can be coded in any order in the operand, but the order in which
they are popped and written is fixed.

For (4), (5), and (6), the symbols indicate register sets.
"PUSHS ER" is equivalent to "PUSHS ER0,ER1,ER2,ER3."  "POSPS PR" is equivalent to "
PUSHS X1,X2,DP,USP." " PUSHS CR" is equivalent to " PUSHS A,LRB,PSW."  The
popping sequence for local registers is ER3→ER2→ER1→ER0.  For pointer registers, it is
USP→DP→X2→X1. For control registers, it is A→LRB→PSW.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

C, Z, S, OV, HC, DD are all changed only when the PSW is popped.  They are unchanged in
all other cases.

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

PUSHS A 07 3
PUSHS register_list 06 register mask value 5+4m*

*m: number of popped registers

PUSHS :00
PUSHU :01 00: ERn ER3 ER2 ER1 ER0

POPS :10 01: PR n USP DP X2 X1
POPU :11 10: CRn A LRB PSW

Bit correspondings
to the register to
move is 1

7 6 5 4 3 2 1 0



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  R-1

RB  obj.bit Reset Bit (Bit Position Direct Specification)

Function

if obj.bit = 0 then Z←1 else Z←0
obj.bit←0

Description
• This instruction resets to 0 the contents of the bit specified by bit in obj (byte length).
• Byte addressing is coded in obj.
• Before resetting the specified bit, this instruction examines its contents and sets the zero flag

(Z).  If the specified bit is 0 before instruction execution, then Z will be set to 1; if the bit is 1,
then Z will be reset to 0.

• For bits in particular areas, this instruction can be executed more effectively with sbafix/sbaoff
addressing.  Please see the chapter that explains addressing for details.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

sbafix 58 +bit sbafix6+40 4RB
sbaoff 48 +bit sbaoff6+40 4

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

RB ∗.bit <byte> 00  +bit +3

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

R-2  Chapter 3 nX-8/500S Instruction Manual

RBR  obj  Reset Bit (Register Indirect Bit Specification)

Function

if obj.(AL) = 0 then Z←1 else Z←0
obj.(AL) ←0

Description
• This instruction resets to 0 the contents of the bit at the specified position within the bit block.
• The bit block is the block of 256 bits starting from the address obj.  A byte addressing

specification is coded in obj.
• The bit position is 0-255, specified by the contents of the accumulator low byte (AL).
• Before resetting the specified bit, this instruction examines its contents and sets the zero flag

(Z).  If the specified bit is 0 before instruction execution, then Z will be set to 1; if the bit is 1,
then Z will be reset to 0.

• The same instruction coded for nX-8/100-400 has a different function.  For nX-8/100-400,
only the lower 3 bits of AL are valid for the bit position specification.  In this case, only the 8
bits of obj can specified as the target bit.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

RBR ∗ <byte> B9 +5

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  R-3

RC  Reset Carry

Function

C ← 0

Description
• This instruction resets the carry flag (C) to 0.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
0

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

RC CA 2



Chapter 3  Instruction Details
Instruction Set

R-4  Chapter 3 nX-8/500S Instruction Manual

RDD Reset DD

Function

DD ← 0

Description
• This instruction resets the data descriptor (DD) to 0 (byte).
• DD is the flag that specifies how calculations with the accumulator are to be performed.
• Following this instruction, accumulator calculations will be byte length.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
0

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

RDD D8 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  R-5

ROL  A,width
ROL  A  Word Left Rotate (With Carry)

Function

Description
• This instruction rotates the accumulator (A) up to 4 bits to the left, including the carry flag.
• The width specifies the number of bits to rotate with a value 1 to 4.  One instruction can

rotate a maximum of 4 bits.
• "ROL A" is equivalent to "ROL A,1."
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
* 1

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

AF 2ROL A

width BC AC
+width

4+n*

* n=number of bits to rotate

C A15 0



Chapter 3  Instruction Details
Instruction Set

R-6  Chapter 3 nX-8/500S Instruction Manual

ROL  obj,width
ROL  obj  Word Left Rotate (With Carry)

Function

Description
• This instruction rotates obj (word length) up to 4 bits to the left, including the carry flag.
• The width specifies the number of bits to rotate with a value 1 to 4.  One instruction can

rotate a maximum of 4 bits.
• "ROL obj" is equivalent to "ROL obj,1."

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
*

Codes

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

ROL ∗∗ width <word> AC +width +2+n *
* n=number of bits to rotate

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 64  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6

C obj15 0



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  R-7

ROLB  A,width
ROLB  A Byte Left Rotate (With Carry)

Function

Description
• This instruction rotates the accumulator low byte (AL) up to 4 bits to the left, including the

carry flag.
• The width specifies the number of bits to rotate with a value 1 to 4.  One instruction can

rotate a maximum of 4 bits.
• "ROLB A" is equivalent to "ROLB A,1."
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
* 0

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

AF 2ROLB A

width BC AC
+width

4+n*

* n=number of bits to rotate

C A7 0



Chapter 3  Instruction Details
Instruction Set

R-8  Chapter 3 nX-8/500S Instruction Manual

ROLB  obj,width
ROLB  obj Byte Left Rotate (With Carry)

Function

Description
• This instruction rotates obj (byte length) up to 4 bits to the left, including the carry flag.
• The width specifies the number of bits to rotate with a value 1 to 4.  One instruction can

rotate a maximum of 4 bits.
• "ROLB obj" is equivalent to "ROLB obj,1."

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
*

Codes

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

ROLB ∗ width <word> AC+width +2+n *
* n=number of bits to rotate

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

C obj7 0



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  R-9

ROR  A,width
ROR  A  Word Right Rotate (With Carry)

Function

Description
• This instruction rotates the accumulator (A) up to 4 bits to the right, including the carry flag.
• The width specifies the number of bits to rotate with a value 1 to 4.  One instruction can

rotate a maximum of 4 bits.
• "ROR A" is equivalent to "ROR A,1."
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
* 1

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

BF 2ROR A

width BC BC
+width

4+n *

* n=number of bits to rotate

C A15 0



Chapter 3  Instruction Details
Instruction Set

R-10  Chapter 3 nX-8/500S Instruction Manual

ROR  obj,width
ROR  obj  Word Right Rotate (With Carry)

Function

Description
• This instruction rotates obj (word length) up to 4 bits to the right, including the carry flag.
• The width specifies the number of bits to rotate with a value 1 to 4.  One instruction can

rotate a maximum of 4 bits.
• ROR obj" is equivalent to "ROR obj,1."

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
*

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

ROR ∗∗ width <word> BC +width +2+n ∗
* n=number of bits to rotate

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 64  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6

C obj15 0



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  R-11

RORB  A,width
RORB  A  Byte Right Rotate (With Carry)

Function

Description
• This instruction rotates the accumulator low byte (AL) up to 4 bits to the right, including the

carry flag.
• The width specifies the number of bits to rotate with a value 1 to 4.  One instruction can

rotate a maximum of 4 bits.
• "RORB A" is equivalent to "RORB A,1."
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
* 0

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

BF 2RORB A

width BC BC
+width

4+n *

* n=number of bits to rotate

C A7 0



Chapter 3  Instruction Details
Instruction Set

R-12  Chapter 3 nX-8/500S Instruction Manual

RORB  obj,width
RORB  obj Byte Right Rotate (With Carry)

Function

Description
• This instruction rotates obj (byte length) up to 4 bits to the right, including the carry flag.
• The width specifies the number of bits to rotate with a value 1 to 4.  One instruction can

rotate a maximum of 4 bits.
• "RORB obj" is equivalent to "RORB obj,1."

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
*

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

RORB ∗ width <byte> BC+width +2+n ∗
* n=number of bits to rotate

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

C obj7 0



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  R-13

RT  Return From Subroutine

Function

SSP ← SSP+2
PC ← (SSP)

Description
• This instruction returns from a subroutine called by an SCAL, CAL, or ACAL instruction, or

by a VCAL instruction under the small or compact memory models.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

RT 01 6



Chapter 3  Instruction Details
Instruction Set

R-14  Chapter 3 nX-8/500S Instruction Manual

RTI  Return From Interrupt

Function

1)  Small/compact memory models
SSP ← SSP+2, PSW ← (SSP)
SSP ← SSP+2, LRB ← (SSP)
SSP ← SSP+2, A ← (SSP)
SSP ← SSP+2, PC ← (SSP)

2)  Medium/large memory models
SSP ← SSP+2, PSW ← (SSP)
SSP ← SSP+2, LRB ← (SSP)
SSP ← SSP+2, A ← (SSP)
SSP ← SSP+2, CSR ← (SSP)
SSP ← SSP+2, PC ← (SSP)

Description
• This instruction returns from an interrupt routine.
1)Under the small/compact memory models, the PSW, LRB, A, and PC are popped from the

system stack in that order.
SSP before popping 7          0 ↑ Low addresses

LSBPSW
MSB
LSBLRB
MSB
LSBA
MSB
LSB

  SSP after popping P C
MSB ↓ High addresses

2)Under the small/compact memory models, the PSW, LRB, A, PC, and CSR are popped from
the system stack in that order.
SSP before popping 7          0 ↑ Low addresses

LSBPSW
MSB
LSBLRB
MSB
LSBA
MSB

CSR
-

LSB

  SSP after popping P C
MSB ↓ High addresses

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
* * * * * *

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

RTI 02 12/14
Near/Far



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-1

SB  obj.bit  Set Bit (Bit Position Direct Specification)

Function

if obj.bit = 0 then Z←1 else Z←0
obj.bit←1

Description
• This instruction sets to 1 the contents of the bit specified by bit in obj (byte length).
• Byte addressing is coded in obj.
• Before setting the specified bit, this instruction examines its contents and sets the zero flag (Z).

If the specified bit is 0 before instruction execution, then Z will be set to 1; if the bit is 1, then
Z will be reset to 0.

• For bits in particular areas, this instruction can be executed more effectively with sbafix/sbaoff
addressing.  Please see the chapter that explains addressing for details.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

sbafix 58  +bit sbafix6 4SB
sbaoff 48  +bit sbaoff6 4

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

SB ∗.bit <byte> 08  +bit +3

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A BC 2
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

S-2  Chapter 3 nX-8/500S Instruction Manual

SBC  A,obj Word Subtraction With Carry

Function

A←A-obj-C

Description
• This instruction performs word subtraction, subtracting the contents of obj (word length) and

the carry flag from the accumulator (A).
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ 1

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SBC A #N16 BC E3 N16L N16H 8

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

SBC A ∗∗ <word> E5 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-3

SBC  obj1,obj2  Word Subtraction With Carry

Function

obj1 ← obj1-obj2-C

Description
• This instruction performs word subtraction, subtracting the contents of obj2 (word length) and

the carry flag from obj1 (word length).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <word> E0 fix8 +5
off <word> E1 off8 +5
sfr <word> E2 sfr8 +5
#N16 <word> E3 N16L N16H +6

SBC ∗∗

A <word> E4 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

S-4  Chapter 3 nX-8/500S Instruction Manual

SBCB  A,obj Byte Subtraction With Carry

Function

AL ← AL-obj-C

Description
• This instruction performs byte subtraction, subtracting the contents of obj (byte length) and the

carry flag from the accumulator low byte (AL).
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ 0

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SBCB A #N8 BC E3 N8 6

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

SBCB A ∗ <byte> E5 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-5

SBCB  obj1,obj2  Byte Subtraction With Carry

Function

obj1 ← obj1-obj2-C

Description
• This instruction performs byte subtraction, subtracting the contents of obj2 (byte length) and

the carry flag from obj1 (byte length).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <byte> E0 fix8 +5
off <byte> E1 off8 +5
sfr <byte> E2 sfr8 +5
#N8 <byte> E3 N8 +4

SBCB ∗

A <byte> E4 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

S-6  Chapter 3 nX-8/500S Instruction Manual

SBR  obj Set Bit (Register Indirect Bit Specification)

Function

if obj.(AL) = 0 then Z←1 else Z←0
obj.(AL) ← 1

Description
• This instruction sets to 1 the contents of the bit at the specified position within the bit block.
• The bit block is the block of 256 bits starting from the address obj.  A byte addressing

specification is coded in obj.
• The bit position is 0-255, specified by the contents of the accumulator low byte (AL).
• Before setting the specified bit, this instruction examines its contents and sets the zero flag (Z).

If the specified bit is 0 before instruction execution, then Z will be set to 1; if the bit is 1, then
Z will be reset to 0.

The same instruction coded for nX-8/100-400 has a different function.  For nX-8/100-400, only the lower 3 bits of AL are

valid for the bit position specification.  In this case, only the 8 bits of obj can specified as the target bit.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

SBR ∗ <byte> B8 +5

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-7

SC  Set Carry

Function

C ← 1

Description
• This instruction sets the carry flag (C) to 1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
1

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SC CB 2



Chapter 3  Instruction Details
Instruction Set

S-8  Chapter 3 nX-8/500S Instruction Manual

SCAL  Cadr 64K-Byte Space (Within Current Physical Code Segment) Direct Call

Function

(SSP)←PC+3
SSP←SSP-2,
PC←Cadr
However, CSR:0000H ≤ Cadr ≤ CSR:0FFFFH

Description
• This instruction is supported to provide compatibility with nX-8/100-400.  It is actually

identical to the CAL instruction.
• This instruction calls any addresss in the 64K bytes in the current physical segment.
• The first address of the subroutine is coded in Cadr.  The subroutine must exist within the

current physical segment.
• The state of the stack after execution of an SCAL instruction is shown below.  Subroutines

called with an SCAL instruction return using an RT instruction.

 SSP after call 7          0 ↑ Low addresses
LSBSSP before call P C

MSB

↓ High addresses

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

SCAL Cadr FE CadrL CadrH 9



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-9

SDD  Set DD

Function

DD ← 1

Description
• This instruction sets the data descriptor (DD) to 1 (word).
• DD is the flag that specifies how calculations with the accumulator are to be performed.
• Following this instruction, accumulator calculations will be word length.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
1

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SDD D9 2



Chapter 3  Instruction Details
Instruction Set

S-10  Chapter 3 nX-8/500S Instruction Manual

SJ  radr  Short Jump

Function

PC←radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127
and CSR:0000H ≤ radr ≤ CSR:0FFFFH

Description
• This instruction is a relative jump to an address found by adding a signed 8-bit displacement

to a base, the first address of the next instruction.
• The jump address is coded in radr.  The jump address must exist within the current physical

segment.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SJ radr 04 rdiff8 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-11

SLL  A,width
SLL  A  Word Left Shift (With Carry)

Function

Description
• This instruction shifts the accumulator (A) up to 4 bits to the left.
• The width specifies the number of bits to shift with a value 1 to 4.  One instruction can shift a

maximum of 4 bits.
• "SLL A" is equivalent to "SLL A,1."
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ 1

C : If any of the bits carried out of bit 15 of A from the shift operation is 1, then C
will be set to 1.  If all carry-out bits are 0, then C will be reset to 0.

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

8F 2SLL A
width BC 8C +width 4+n*

* n=number of bits to shift

C A15 0

0



Chapter 3  Instruction Details
Instruction Set

S-12  Chapter 3 nX-8/500S Instruction Manual

SLL  obj,width
SLL  obj  Word Left Shift (With Carry)

Function

Description
• This instruction shifts obj (word length) up to 4 bits to the left.
• The width specifies the number of bits to shift with a value 1 to 4.  One instruction can shift a

maximum of 4 bits.
• "SLL obj" is equivalent to "SLL obj,1."

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

C : If any of the bits carried out of bit 15 of obj from the shift operation is 1, then
C will be set to 1.  If all carry-out bits are 0, then C will be reset to 0.

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

SLL ∗∗ width <word> 8C +width +2+n ∗
* n=number of bits to shift

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6

C obj15 0

0



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-13

SSLB  A,width
SSLB  A Byte Left Shift (With Carry)

Function

Description
• This instruction shifts the accumulator low byte (AL) up to 4 bits to the left.
• The width specifies the number of bits to shift with a value 1 to 4.  One instruction can shift a

maximum of 4 bits.
• "SLLB A" is equivalent to "SLLB A,1."
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ 0

C : If any of the bits carried out of bit 7 of obj from the shift operation is 1, then C
will be set to 1.  If all carry-out bits are 0, then C will be reset to 0.

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

8F 2SLLB A
width BC 8C +width 4+n*

* n=number of bits to shift

A7 0C
0



Chapter 3  Instruction Details
Instruction Set

S-14  Chapter 3 nX-8/500S Instruction Manual

SLLB  obj,width
SLLB  obj Byte Left Shift (With Carry)

Function

Description
• This instruction shifts obj (byte length) up to 4 bits to the left.
• The width specifies the number of bits to shift with a value 1 to 4.  One instruction can shift a

maximum of 4 bits.
• "SLLB obj" is equivalent to "SLLB obj,1."

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

C : If any of the bits carried out of bit 7 of obj from the shift operation is 1, then C
will be set to 1.  If all carry-out bits are 0, then C will be reset to 0.

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

SLLB ∗ width <byte> 8C+width +2+n ∗
* n=number of bits to shift

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

obj7 0C

0



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-15

SQR  A Word Square

Function

<A,ER0> ← A × A

Description
• This instruction squares the contents of the 16-bit accumulator (A), giving a 32-bit result.
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ 1

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

SQR A BC A9 23



Chapter 3  Instruction Details
Instruction Set

S-16  Chapter 3 nX-8/500S Instruction Manual

SQRB  A Byte Square

Function

A ← AL × AL

Description
• This instruction squares the contents of the 16-bit accumulator low byte (AL), giving a 16-bit

result.
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ 0

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

SQRB A BC A9 14



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-17

SRA  A,width
SRA  A  Word Arithmetic Right Shift (With Carry)

Function

Description
• This instruction shifts the accumulator (A) up to 4 bits to the right, including the carry flag.
• Each time one bit is shifted in an arithmetic shift, the carry-out from A0 is entered into C and

A15 itself is entered into A15.
• The width specifies the number of bits to shift with a value 1 to 4.  One instruction can shift a

maximum of 4 bits.
• "SRA A" is equivalent to "SRA A,1."
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ 1

C : The last value carried out of A0 will be entered in C.

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

SRA A width BC EC +width 4+n*
* n=number of bits to shift

A15 0 C



Chapter 3  Instruction Details
Instruction Set

S-18  Chapter 3 nX-8/500S Instruction Manual

SRA  obj,width
SRA  obj  Word Arithmetic Right Shift (With Carry)

Function

Description
• This instruction shifts obj (word length) up to 4 bits to the right, including the carry flag.
• Each time one bit is shifted in an arithmetic shift, the carry-out from obj0 is entered into C and

obj15 itself is entered into obj15.
• The width specifies the number of bits to shift with a value 1 to 4.  One instruction can shift a

maximum of 4 bits.
• "SRA obj" is equivalent to "SRA obj,1."

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

C : The last value carried out of A0 will be entered in C.

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

SRA ∗∗ width <word> EC
+width

+2+n*

* n=number of bits to shift

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6

obj15 0 C



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-19

SRAB  A,width
SRAB  A Byte Arithmetic Right Shift (With Carry)

Function

Description
• This instruction shifts the accumulator low byte (AL) up to 4 bits to the right, including the

carry flag.
• Each time one bit is shifted in an arithmetic shift, the carry-out from A0 is entered into C and

A7 itself is entered into A7.
• The width specifies the number of bits to shift with a value 1 to 4.  One instruction can shift a

maximum of 4 bits.
• "SRAB A" is equivalent to "SRAB A,1."

• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ 0

C : The last value carried out of A0 will be entered in C.

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

SRAB A width BC EC
+width

4+n*

* n=number of bits to shift

A7 0 C



Chapter 3  Instruction Details
Instruction Set

S-20  Chapter 3 nX-8/500S Instruction Manual

SRAB  obj,width
SRAB  obj Byte Arithmetic Right Shift (With Carry)

Function

Description
• This instruction shifts obj (byte length) up to 4 bits to the right, including the carry flag.
• Each time one bit is shifted in an arithmetic shift, the carry-out from obj0 is entered into C and

obj7 itself is entered into obj7.
• The width specifies the number of bits to shift with a value 1 to 4.  One instruction can shift a

maximum of 4 bits.
• "SRAB obj" is equivalent to "SRAB obj,1."

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

C : The last value carried out of A0 will be entered in C.

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

SRAB ∗ width <byte> EC+width +2+n *
* n=number of bits to shift

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

obj7 0 C



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-21

SRL  A,width
SRL  A  Word Right Shift (With Carry)

Function

Description
• This instruction shifts the accumulator (A) up to 4 bits to the right, including the carry flag.
• The width specifies the number of bits to shift with a value 1 to 4.  One instruction can shift a

maximum of 4 bits.
• "SRL A" is equivalent to "SRL A,1."
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ 1

C : The last value carried out of A0 will be entered in C.

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

9F 2SRL A
width BC 9C +width 4+n*

* n=number of bits to shift

A15 0 C
0



Chapter 3  Instruction Details
Instruction Set

S-22  Chapter 3 nX-8/500S Instruction Manual

SRL  obj,width
SRL  obj  Word Right Shift (With Carry)

Function

Description
• This instruction shifts obj (word length) up to 4 bits to the right, including the carry flag.
• The width specifies the number of bits to shift with a value 1 to 4.  One instruction can shift a

maximum of 4 bits.
• "SRL obj" is equivalent to "SRL obj,1."

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

C : The last value carried out of A0 will be entered in C.

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

SRL ∗∗ width <word> 9C +width +2+n*
* n=number of bits to shift

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6

obj15 0 C
0



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-23

SRLB  A,width
SRLB  A Byte Right Shift (With Carry)

Function

Description
• This instruction shifts the accumulator low byte (AL) up to 4 bits to the right, including the

carry flag.
• The width specifies the number of bits to shift with a value 1 to 4.  One instruction can shift a

maximum of 4 bits.
• "SRLB A" is equivalent to "SRLB A,1."
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ 0

C : The last value carried out of A0 will be entered in C.

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

9F 2SRLB A
width BC 9C +width 4+n *

* n=number of bits to shift

A7 0 C
0



Chapter 3  Instruction Details
Instruction Set

S-24  Chapter 3 nX-8/500S Instruction Manual

SRLB  obj,width
SRLB  obj Byte Right Shift (With Carry)

Function

Description
• This instruction shifts obj (byte length) up to 4 bits to the right, including the carry flag.
• The width specifies the number of bits to shift with a value 1 to 4.  One instruction can shift a

maximum of 4 bits.
• "SRLB obj" is equivalent to "SRLB obj,1."

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

C : The last value carried out of A0 will be entered in C.
* n=number of bits to shift

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

SRLB ∗ width <byte> 9C+width +2+n *
* n=number of bits to shift

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

obj7 0 C
0



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-25

ST  A,obj Word Store

Function

obj ← A

Description
• This instruction stores the contents of the accumulator (A) into obj (word length).
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
1

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

ERn 38  +n 2
PRn 3C  +n 2
[X1] 30 4
[DP] 32 4
[DP−] 31 5
[DP+] 33 5
fix 34 fix8 4
off 35 off8 4
sfr 36 sir8 4
dir 37 dirL dirH 6
D16[X1] C8 D16L D16H 6
D16[X2] BC 99 D16L D16H 8
n7[USP] C9 n7 6

ST A

n7[DP] C9 80  +n7 6



Chapter 3  Instruction Details
Instruction Set

S-26  Chapter 3 nX-8/500S Instruction Manual

STB  A,obj  Byte Store

Function

obj ← AL

Description
• This instruction stores the contents of the accumulator low byte (AL) into obj (word length).
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
0

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

Rn 38  +n 2
[X1] 30 4
[DP] 32 4
[DP−] 31 5
[DP+] 33 5
fix 34 fix8 4
off 35 off8 4
sfr 36 sir8 4
dir 37 dirL dirH 6
D16[X1] C8 D16L D16H 6
D16[X1] BC 99 D16L D16H 8
n7[USP] C9 n7 6

STB A

n7[DP] C9 80  +n7 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-27

SUB  A,obj Word Subtraction

Function

A ← A-obj

Description
• This instruction performs word subtraction, subtracting the contents of obj (word length) from

the accumulator (A).
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ 1

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

ERn 08+n 3
PRn 0C+n 3
#N16 8E N16L N16H 6
fix 8C fix8 4

SUB A

off 8D off8 4

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

SUB A ∗∗ <word> 85 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

S-28  Chapter 3 nX-8/500S Instruction Manual

SUB  obj1,obj2 Word Subtraction

Function

obj1 ← obj1+obj2

Description
• This instruction performs word subtraction, subtracting the contents of obj2 (word length)

from obj1 (word length).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <word> 80 fix8 +5
off <word> 81 off8 +5
sfr <word> 82 sfr8 +5
#N16 <word> 83 N16L N16H +6

SUB ∗∗

A <word> 84 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-29

SUBB  A,obj Byte Subtraction

Function

AL ← AL-obj

Description
• This instruction performs byte subtraction, subtracting the contents of obj (byte length) from

the accumulator low byte (AL).
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗ 0

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

Rn 08+n 3
#N8 8E N8 4
fix 8C fix8 4

SUBB A

off 8D off8 4

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

SUBB A ∗ <byte> 85 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

S-30  Chapter 3 nX-8/500S Instruction Manual

SUBB  obj1,obj2 Byte Subtraction

Function

obj1 ← obj1−obj2

Description
• This instruction performs byte subtraction, subtracting the contents of obj2 (byte length) from

obj1 (byte length).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ ∗ ∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <byte> 80 fix8 +5
off <byte> 81 off8 +5
sfr <byte> 82 sfr8 +5
#N8 <byte> 83 N8 +4

SUBB ∗

A <byte> 84 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  S-31

SWAP High/Low Byte Swap

Function

AH ←→ AL

Description
• This instruction swaps the accumulator's high byte (AH) and low byte (AL).
• Differences with nX-8/100-400:
F nX-8/500S : DD does not affect instruction execution.

LB A,#12H
SWAP ; AH←→AL

F nX-8/100-400 : Instruction execution is limited to when DD is 1.
LB A,#12H
SWAP ; will operate as SWAPB

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

SWAP DF 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  T-1

TBR  obj Test Bit (Register Indirect Bit Specification)

Function

if obj.(AL)=0 then Z←1 else Z←0

Description
• This instruction tests the contents of the bit at the specified position within the bit block and

sets the zero flag.  If the specified bit is 0, then Z will be set to 1; if the bit is 1, then Z will be
reset to 0.

• The bit block is the block of 256 bits starting from the address obj.  A byte addressing
specification is coded in obj.

• The bit position is 0-255, specified by the contents of the accumulator low byte (AL).
• The same instruction coded for nX-8/100-400 has a different function.  For nX-8/100-400,

only the lower 3 bits of AL are valid for the bit position specification.  In this case, only the 8
bits of obj can specified as the target bit.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

TBR ∗ <byte> CA +5

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

T-2  Chapter 3 nX-8/500S Instruction Manual

TJNZ  A, radr Word Test and Jump (Jump If Non-Zero)

Function

if A ≠0 then PC← radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127
and CSR:0000H ≤ radr ≤ CSR:0FFFFH

Description
• This instruction branches to the specified jump address if the contents of the accumulator (A)

are non-zero.
• The jump address is coded in radr.  It is restricted to the relative jump range defined by a

signed 8-bit displacement added to a base (the first address of the next instruction).  radr
must exist within the current physical segment.

• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
1

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
TJNZ A radr BC A6 rdiff8 7/11



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  T-3

TJNZ  obj, radr Word Test and Jump (Jump If Non-Zero)

Function

if obj≠0 then PC← radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127
and CSR:0000H ≤ radr ≤ CSR:0FFFFH

Description
• This instruction branches to the specified jump address if the contents of obj (word length) are

non-zero.
• The jump address is coded in radr.  It is restricted to the relative jump range defined by a

signed 8-bit displacement added to a base (the first address of the next instruction).  radr
must exist within the current physical segment.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd +4th +5th

Cycles
(Internal)

TJNZ ∗∗ radr <word> A6 rdiff8 +4/8

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

T-4  Chapter 3 nX-8/500S Instruction Manual

TJNZB  A, radr Byte Test and Jump (Jump If Non-Zero)

Function

if AL ≠0 then PC← radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127
and CSR:0000H ≤ radr ≤ CSR:0FFFFH

Description
• This instruction branches to the specified jump address if the contents of the accumulator low

byte (AL) are non-zero.
• The jump address is coded in radr.  It is restricted to the relative jump range defined by a

signed 8-bit displacement added to a base (the first address of the next instruction).  radr
must exist within the current physical segment.

• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
0

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
TJNZB A radr BC A6 rdiff8 7/11



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  T-5

TJNZB  obj, radr Byte Test and Jump (Jump If Non-Zero)

Function

if obj≠0 then PC← radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127
and CSR:0000H ≤ radr ≤ CSR:0FFFFH

Description
• This instruction branches to the specified jump address if the contents of obj (byte length) are

non-zero.
• The jump address is coded in radr.  It is restricted to the relative jump range defined by a

signed 8-bit displacement added to a base (the first address of the next instruction).  radr
must exist within the current physical segment.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

TJNZB ∗ radr <byte> A6 rdiff8 +4/8

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

T-6  Chapter 3 nX-8/500S Instruction Manual

TJZ  A, radr Word Test and Jump (Jump If Zero)

Function

if A=0 then PC← radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127
and CSR:0000H ≤ radr ≤ CSR:0FFFFH

Description
• This instruction branches to the specified jump address if the contents of the accumulator (A)

are zero.
• The jump address is coded in radr.  It is restricted to the relative jump range defined by a

signed 8-bit displacement added to a base (the first address of the next instruction).  radr
must exist within the current physical segment.

• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
1

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
TJZ A radr BC A7 rdiff8 7/11



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  T-7

TJZ  obj, radr Word Test and Jump (Jump If Zero)

Function

if obj=0 then PC← radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127
and CSR:0000H ≤ radr ≤ CSR:0FFFFH

Description
• This instruction branches to the specified jump address if the contents of obj (word length) are

zero.
• The jump address is coded in radr.  It is restricted to the relative jump range defined by a

signed 8-bit displacement added to a base (the first address of the next instruction).  radr
must exist within the current physical segment.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

TJZ ∗∗ radr <word> A7 rdiff8 +4/8

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

T-8  Chapter 3 nX-8/500S Instruction Manual

TJZB  A, radr Byte Test and Jump (Jump If Zero)

Function

if AL=0 then PC← radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127
and CSR:0000H ≤ radr ≤ CSR:0FFFFH

Description
• This instruction branches to the specified jump address if the contents of the accumulator low

byte (AL) are zero.
• The jump address is coded in radr.  It is restricted to the relative jump range defined by a

signed 8-bit displacement added to a base (the first address of the next instruction).  radr
must exist within the current physical segment.

• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
0

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
TJZB A radr BC A7 rdiff8 7/11



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  T-9

TJZB  obj, radr Byte Test and Jump (Jump If Zero)

Function

if obj=0 then PC← radr
However, the next instruction's first address-128 ≤ radr ≤ the next instruction's first address+127
and CSR:0000H ≤ radr ≤ CSR:0FFFFH

Description
• This instruction branches to the specified jump address if the contents of obj (byte length) are

zero.
• The jump address is coded in radr.  It is restricted to the relative jump range defined by a

signed 8-bit displacement added to a base (the first address of the next instruction).  radr
must exist within the current physical segment.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

TJZB ∗ radr <byte> A7 rdiff8 +4/8

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  V-1

VCAL  Vadr Vector Call

Function

1) Small/compact memory models
(SSP)←PC+1 ; move next PC
SSP←SSP-2
PC←(Vadr) ; store Vadr to PC

2) Medium/large memory models
(SSP)← PC+1 ; move next PC
SSP←SSP-2
(SSP)← CSR ; move CSR
SSP←SSP-2
CSR←0 ; VCAL subroutine must be in physical segment 0
PC←(Vadr) ; store Vadr to PC

However, 0:4AH ≤ Cadr ≤ 0:68H, and even address for both 1) and 2).
Description

• This instruction calls the subroutine whose jump address is the data word in the VCAL table
area specified by Vadr.

• A vector address is coded in Vadr.  Any address in the 64K bytes of physical segment 0 can
be specified as a vector.

• The called subroutine must exist in physical segment 0.
• The state of the stack after execution of a VCAL instruction is shown below.
• Subroutines called with a VCAL instruction return using an RT instruction in the

small/compact memory models, or an FRT instruction in the medium/large memory models.

1) Small/compact memory models
 SSP after call 7          0 ↑ Low addresses

LSB
SSP before call P C

MSB

↓ High addresses

2) Medium/large memory models
 SSP after call 7          0 ↑ Low addresses

C S R
-

LSB

SSP before call P C
MSB

↓ High addresses
Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD

Codes
Instruction Syntax Instruction Code
mnemonic operand 1st 2nd 3rd 4th 5th 6th

Cycles
(Internal)

VCAL Vadr E0 +Vno 10



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  X-1

XCHG  A,obj  Word Exchange

Function

A←→obj

Description
• This instruction exchanges the contents of the accumulator (A) with the contents of obj (word

length).
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
1

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

XCHG A ∗∗ <word> C8 +3

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6



Chapter 3  Instruction Details
Instruction Set

X-2  Chapter 3 nX-8/500S Instruction Manual

XCHGB  A,obj  Byte Exchange

Function

AL←→obj

Description
• This instruction exchanges the contents of the accumulator low byte (AL) with the contents of

obj (byte length).
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
0

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

XCHGB A ∗ <byte> C8 +3

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  X-3

XOR  A,obj Word Logical Exclusive OR

Function

A ← A  obj

Description
• This instruction takes the word logical exclusive OR of the contents of obj (word length) and

the accumulator (A), and stores the result in the accumulator.
• Execution of this instruction is limited to when DD is 1 (word).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ 1

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

off DD off8 4XOR A
#N16 DE N16L N16H 6

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

XOR A ∗∗ <word> D5 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6

∪



Chapter 3  Instruction Details
Instruction Set

X-4  Chapter 3 nX-8/500S Instruction Manual

XOR obj1,obj2 Word Logical Exclusive OR

Function

obj1 ← obj1  obj2

Description
• This instruction takes the word logical exclusive OR of the contents of obj1 (word length) and

obj2 (word length), and stores the result in obj1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <word> D0 fix8 +5
off <word> D1 off8 +5
sfr <word> D2 sfr8 +5
#N16 <word> D3 N16L N16H +6

XOR ∗∗

A <word> D4 +2

<word>
Word Prefix Instruction Code∗∗
1st 2nd 3rd

Cycles
(Internal)

A - -
ERn 64  +n 2
PRn 60  +n 2
[X1] A0 4
[DP] A2 4
[DP−] A1 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80  +n7 6
[X1+A] AA 6
[X1+R0] AB 6

∪



Chapter 3  Instruction Details
Instruction Set

nX-8/500S Instruction Manual Chapter 3  X-5

XORB  A,obj Byte Logical Exclusive OR

Function

AL ← AL  obj

Description
• This instruction takes the word logical exclusive OR of the contents of obj (byte length) and

the accumulator low byte (AL), and stores the result in the accumulator.
• Execution of this instruction is limited to when DD is 0 (byte).

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗ 0

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)

off DD off8 4XORB A
#N8 DE N8 4

Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

XORB A ∗ <byte> D5 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

∪



Chapter 3  Instruction Details
Instruction Set

X-6  Chapter 3 nX-8/500S Instruction Manual

XORB  obj1,obj2 Byte Logical Exclusive OR

Function

obj1 ← obj1  obj2

Description
• This instruction takes the word logical exclusive OR of the contents of obj1 (byte length) and

obj2 (byte length), and stores the result in obj1.

Flags

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV HC DD DD
∗ ∗

Codes
Instruction Syntax Instruction Code
mnemonic operand prefix +1st +2nd +3rd

Cycles
(Internal)

fix <byte> D0 fix8 +5
off <byte> D1 off8 +5
sfr <byte> D2 sfr8 +5
#N8 <byte> D3 N8 +4

XORB ∗

A <byte> D4 +2

<byte>
Byte Prefix Instruction Code∗
1st 2nd 3rd

Cycles
(Internal)

A - -
Rn 68  +n 2
[X1] B0 4
[DP] B2 4
[DP−] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80  +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

∪


	COVER
	NOTICE
	Table of Contents
	Chapter 0. Preface
	Chapter 1. Architecture
	1-1. Overview
	1-1-1. Overview Of OLMS-66K Series And nX-8/500S Core

	1-2. CPU Resources And Programming Model
	1-2-1. Register
	1-2-1-1. Accumulator (A)
	1-2-1-2. Control Register (CR)
	1-2-1-2-1. Program Status Word (PSW)
	1-2-1-2-1-1. How Instructions Change PSW Flags

	1-2-1-2-2. Program Counter (PC)
	1-2-1-2-3. Local Register Base (LRB)
	1-2-1-2-4. System Stack Pointer (SSP)

	1-2-1-3. Pointing Registers (PR)
	1-2-1-3-1. Addressing With Pointing Registers

	1-2-1-4. Local Registers (ER)
	1-2-1-4-1. Addressing With Local Registers

	1-2-1-5. Segment Registers
	1-2-1-5-1. Code Segment Register (CSR)
	1-2-1-5-2. Table Segment Register (TSR)
	1-2-1-5-3. Data Segment Register (DSR)

	1-2-1-6. ROM Window Control Register (ROMWIN)
	1-2-1-7. Special Function Registers (SFR)

	1-2-2. Memory Space
	1-2-2-1. Program Memory Space
	1-2-2-1-1. Vector Table Area
	1-2-2-1-1-1. Reset Vector Area
	1-2-2-1-1-2. Interrupt Vector Area
	1-2-2-1-1-3. VCAL Table Area
	1-2-2-1-1-4. Vector Table Coding Syntax

	1-2-2-1-2. ACAL Area
	1-2-2-1-3. ROM Window Area In Program Memory Space
	1-2-2-1-4. Internal And External Program Memory Areas

	1-2-2-2. Data Memory Space
	1-2-2-2-1. SFR Area
	1-2-2-2-2. Extended SFR Area
	1-2-2-2-3. Fixed Page
	1-2-2-2-3-1. Area Available For Pointing Registers
	1-2-2-2-3-2. Fixed Page SBA Area

	1-2-2-2-4. Current Page
	1-2-2-2-4-1. Current Page SBA Area

	1-2-2-2-5. Area Available For Local Registers
	1-2-2-2-6. ROM Window Area In Data Memory Space
	1-2-2-2-7. Common Area
	1-2-2-2-8. Other Memory
	1-2-2-2-8-1. EEPROM Area
	1-2-2-2-8-2. Dual Port RAM Area

	1-2-2-2-9. Internal And External Data Memory Areas



	1-3. Data Types
	1-4. Address Allocation
	1-5. Word Boundaries
	1-6. ROM Window Function
	1-7. Memory Models
	1-8. Data Descriptor (DD)
	1-8-1. Description And Use Of DD
	1-8-2. Instructions That Change DD
	1-8-2-1. Instructions That Change DD As Part Of Their Function
	1-8-2-2. Other Instructions That Change DD

	1-8-3. Instruction Affected By DD
	1-8-4. Pre-Fetched Instructions And DD

	1-9. Changing The Stack
	1-10. Instruction Code Format
	1-10-1. Native Instructions And Composite Instructions

	1-11. Microcontrollers That Use The nX-8/500S Core

	Chapter 2. Addressing Modes
	2-1. Addressing Mode Types
	2-2. RAM Addressing
	A   Accumulator Addressing
	PSW,LRB,SSP   Control Register Addressing
	X1,X2,DP,USP   Pointing Register Addressing
	ER n,R n   Local Register Addressing
	sfr Dadr   SFR Page Addressing
	fix Dadr   Fixed Page Addressing
	off Dadr   Current Page Addressing
	dir Dadr   Direct Data Addressing
	[DP],[X1]   Pointing Register  Indirect Addressing
	[DP+]   DP Indirect Addressing With Post-Increment
	[DP-]   DP Indirect Addressing With Post-Decrement
	n 7[DP],n 7[USP]   DP/USP With Indirect Addressing With 7-Bit Displacement
	D 16[X1],D 16[X2]   X1/X2 Indirect Addressing With 16-Bit Base
	[X1+A],[X1+R0]   X1 Indirect Addressing With 8-Bit Register Displacement
	sbafix Badr   Fixed Page SBA Area Addressing
	sbaoff Badr   Current Page SBA Area Addressing

	2-3. ROM Addressing
	2-3-1. Immediate Addressing
	2-3-2. Table Data Addressing
	2-3-3. Program Code Addressing
	# N16,# N8   Word/Byte Immediate Addressing
	Tadr   Direct Table Addressing
	[ **]   RAM Addressing Indirect Table Addressing
	T16[ **]   RAM Addressing Indirect Addressing With 16-Bit Base
	Cadr   Near Code Addressing
	Fadr   Far Code Addressing
	radr   Relative Code Addressing
	Cadr11   ACAL Code Addressing
	Vadr   VCAL Code Addressing
	[ ** ]   RAM Addressing Indirect Code Addressing


	2-4. ROM Window Addressing

	Chapter 3. Instruction Details
	nX-8/500S Instruction Set Listed By Function
	Symbols Used In Operand Expressions Of Instructions
	Symbols Used In Instruction Code Expressions Of Instructions
	General Example for Instruction Details
	A
	ACAL Cadr11 Special Area Call
	ADC A,obj Word Addition With Carry
	ADC obj1,obj2 Word Addition With Carry
	ADCB A,obj Byte Addition With Carry
	ADCB obj1,obj2 Byte Addition With Carry
	ADD A,obj Word Addition
	ADD obj1,obj2 Word Addition
	ADDB A,obj Byte Addition
	ADDB obj1,obj2 Byte Addition
	AND A,obj Word Logical AND
	AND obj1,obj2 Word Logical AND
	ANDB A,obj Byte Logical AND
	ANDB obj1,obj2 Byte Logical AND

	B
	BAND C,obj.bit Bit Logical AND
	BANDN C,obj.bit Bit Complement and Bit Logical AND
	BOR C,obj.bit Bit Logical OR
	BORN C,obj.bit Bit Complement and Bit Logical OR
	BRK Break (System Reset)
	BXOR C,obj.bit Bit Logical Exclusive OR

	C
	CAL Cadr 64K-Byte Space (Within Current Physical Code Segment) Direct Call
	CAL [obj] 64K-Byte Space (Within Current Physical Code Segment) Indirect Call
	CLR A Word Clear
	CLR obj Word Clear
	CLRB A Byte Clear
	CLRB obj Byte Clear
	CMP A,obj Word Comparison
	CMP obj1,obj2 Word Comparison
	CMPB A,obj Byte Comparison
	CMPB obj1,obj2 Byte Comparison
	CMPC A,[obj] Word ROM Comparison (Indirect)
	CMPC A,T16[obj] Word ROM Comparison (Indirect With 16-Bit Base)
	CMPC A,Tadr Word ROM Comparison (Direct)
	CMPCB A,[obj] Byte ROM Comparison (Indirect)
	CMPCB A,T16[obj] Byte ROM Comparison (Indirect With 16-Bit Base)
	CMPCB A,Tadr Byte ROM Comparison (Direct)
	CPL C Complement Carry

	D
	DEC A Word Decrement
	DEC obj Word Decrement
	DECB A Byte Decrement
	DECB obj Byte Decrement
	DI Disable Interrupts
	DIV obj Word Division
	DIVB obj Byte Division
	DIVQ obj Word Quick Division
	DJNZ obj,radr Loop

	E
	EI Enable Interrupts
	EXTND Byte to Word Sign Extend

	F
	FCAL Fadr 24-Bit Space (16M Bytes: Entire Program Area) Direct Call
	FILL A Word Fill
	FILL obj Word Fill
	FILLB A Byte Fill
	FILLB obj Byte Fill
	FJ Fadr 24-Bit Space (16M Bytes: Entire Program Area) Direct Jump
	FRT Return From Far Subroutine

	I
	INC A Word Increment
	INC obj Word Increment
	INCB A Byte Increment
	INCB obj Byte Increment

	J
	J Cadr 64K-Byte Space (Within Current Physical Code Segment) Direct Jump
	J [obj] 64K-Byte Space (Within Current Physical Code Segment) Indirect JumpPhysical Code Segment) Indirect Jump
	JBR obj.bit,radr Bit Test and Jump
	JBRS obj.bit,radr Bit Test and Jump (With Bit Set)
	JBS obj.bit,radr Bit Test and Jump
	JBSR obj.bit,radr Bit Test and Jump (With Bit Reset)
	Jcond radr Conditional Jump
	JRNZ DP,radr Loop

	L
	L A,obj Word Load
	LB A,obj Byte Load
	LC A,[obj] Word ROM Load (Indirect)
	LC A,T16[obj] Word ROM Load (Indirect With 16-Bit Base)
	LC A,Tadr Word ROM Load (Direct)
	LCB A,[obj] Byte ROM Load (Indirect)
	LCB A,T16[obj] Byte ROM Load (Indirect With 16-Bit Base)
	LCB A,Tadr Byte ROM Load (Direct)

	M
	MAC Multiply-Addition Calculation
	MB C, obj.bit Move Bit
	MB obj.bit ,C Move Bit
	MBR C, obj Move Bit (Register Indirect Bit Specification)
	MBR obj, C Move Bit (Register Indirect Bit Specification)
	MOV obj1, obj2 Word Move
	MOVB obj1, obj2 Byte Move
	MUL obj Word Multiplication
	MULB obj Byte Multiplication

	N
	NEG A Word Negate Sign
	NEGB A Byte Negate Sign
	NOP No Operation

	O
	OR A, obj Word Logical OR
	OR obj1, obj2 Word Logical OR
	ORB A, obj Byte Logical OR
	ORB obj1, obj2 Byte Logical OR

	P
	POPS register_list Pop Off System Stack
	PUSHS register_list Push On System Stack

	R
	RB obj.bit Reset Bit (Bit Position Direct Specification)
	RBR obj Reset Bit (Register Indirect Bit Specification)
	RC Reset Carry
	RDD Reset DD
	ROL A Word Left Rotate (With Carry)
	ROL obj Word Left Rotate (With Carry)
	ROLB A Byte Left Rotate (With Carry)
	ROLB obj Byte Left Rotate (With Carry)
	ROR A Word Right Rotate (With Carry)
	ROR obj Word Right Rotate (With Carry)
	RORB A Byte Right Rotate (With Carry)
	RORB obj Byte Right Rotate (With Carry)
	RT Return From Subroutine
	RTI Return From Interrupt

	S
	SB obj.bit Set Bit (Bit Position Direct Specification)
	SBC A, obj Word Subtraction With Carry
	SBC obj1, obj2 Word Subtraction With Carry
	SBCB A, obj Byte Subtraction With Carry
	SBCB obj1, obj2 Byte Subtraction With Carry
	SBR obj Set Bit (Register Indirect Bit Specification)
	SC Set Carry
	SCAL Cadr 64K-Byte Space (Within Current Physical Code Segment) Direct Call
	SDD Set DD
	SJ radr Short Jump
	SLL A Word Left Shift (With Carry)
	SLL obj Word Left Shift (With Carry)
	SLLB A Byte Left Shift (With Carry)
	SLLB obj Byte Left Shift (With Carry)
	SQR A Word Square
	SQRB A Byte Square
	SRA A Word Arithmetic Right Shift (With Carry)
	SRA obj Word Arithmetic Right Shift (With Carry)
	SRAB A Byte Arithmetic Right Shift (With Carry)
	SRAB obj Byte Arithmetic Right Shift (With Carry)
	SRL A Word Right Shift (With Carry)
	SRL objWord Right Shift (With Carry)
	SRLB A Byte Right Shift (With Carry)
	SRLB obj Byte Right Shift (With Carry)
	ST A,obj Word Store
	STB A,obj Byte Store
	SUB A, obj Word Subtraction
	SUB obj1, obj2 Word Subtraction
	SUBB A,obj Byte Subtraction
	SUBB obj1, obj2 Byte Subtraction
	SWAP High/Low Byte Swap

	T
	TBR obj Test Bit (Register Indirect Bit Specification)
	TJNZ A, radr Word Test & Jump (Jump If Non-Zero)
	TJNZ obj, radr Word Test & Jump (Jump If Non-Zero)
	TJNZB A, radr Byte Test & Jump (Jump If Non-Zero)
	TJNZB obj, radr Byte Test & Jump (Jump If Non-Zero)
	TJZ A, radr Word Test & Jump (Jump If Zero)
	TJZ obj, radr Word Test & Jump (Jump If Zero)
	TJZB A, radr Byte Test & Jump (Jump If Zero)
	TJZB obj, radr Byte Test & Jump (Jump If Zero)

	V
	VCAL Vadr Vector Call

	X
	XCHG A, obj Word Exchange
	XCHGB A, obj Byte Exchange
	XOR A, obj Word Logical Exclusive OR
	XOR obj1, obj2 Word Logical Exclusive OR
	XORB A, obj Byte Logical Exclusive OR
	XORB obj1, obj2 Byte Logical Exclusive OR



